PEMANFAATAN SAMPAH ORGANIK UMKM UNTUK MEDIA TANAM BERBASIS KOMPOSTING

Authors

  • Teuku Muhammad Rasyif Universitas Bakrie
  • Asiah Nurul Universitas Bakrie
  • Adriati Fatin Universitas Bakrie
  • Syalwa Linda Hilmayani Universitas Bakrie
  • Faiz Aly Universitas Bakrie
  • Andyni Clarissa Hartono Universitas Bakrie

DOI:

https://doi.org/10.55681/devote.v4i4.5151

Keywords:

Waste, Composting, MSMEs, Carbon Footprint, Circular Economy

Abstract

Food waste has become a critical global issue with significant environmental, social, and economic consequences. This community service program focused on empowering micro, small, and medium enterprises (MSMEs) at Pujasera JS09 in Jakarta to manage organic waste through composting. The program identified that the canteen produced an average of 150–200 kg of food waste daily, of which 10–30 kg consisted of vegetable residues, fruit peels, and other organic materials suitable for composting. Using a roller composter, the decomposition process successfully transformed waste into mature planting media within approximately 16 days. Compost maturity was confirmed through pH stabilization at 7, neutral odor, and positive immersion tests. Furthermore, carbon footprint analysis using the EPA WARM model revealed that diverting 20 kg/day of organic waste from landfills to composting reduced greenhouse gas emissions by 3.06 tons CO₂e annually, equivalent to an 8% reduction. These results highlight that composting not only improves local hygiene and reduces methane emissions but also supports sustainable waste management practices and climate change mitigation. The program demonstrates a practical and replicable approach for MSMEs to contribute to circular economy implementation and environmental sustainability.

Downloads

Download data is not yet available.

References

Amicarelli, V., Bux, C., & Lagioia, G. (2021). How to measure food loss and waste? A material flow analysis application. British Food Journal, 123(13), 43–65. https://doi.org/10.1108/BFJ-07-2020-0658

Amicarelli, V., Lagioia, G., & Bux, C. (2021). Global warming potential of food waste through the life cycle assessment: An analytical review. Environmental Impact Assessment Review, 91, 106677. https://doi.org/10.1016/j.eiar.2021.106677

Asiah, N., Fairus, S., Violent, Gosal, P. N., & Alfarezi, R. (2024). Belajar hidup minim sampah mulai dari dapur rumah. Universitas Bakrie Press.

Bai, X., Tang, J., Wang, W., Ma, J., Shi, J., & Ren, W. (2023). Organic amendment effects on cropland soil organic carbon and its implications: A global synthesis. Catena, 231, 107343. https://doi.org/10.1016/j.catena.2023.107343

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. https://doi.org/10.1038/s43016-021-00225-9

Debele, A. D., Adam, J., Assefa, B., & Fereja, W. M. (2025). Assessment of biowaste potential in Gedeo Zone: A step toward advanced biogas and biofertilizer production in future for sustainable waste management. Journal of Hazardous Materials Advances, 18, 100661. https://doi.org/10.1016/j.hazadv.2025.100661

Destisa, M., Dwi, T. R., Sulistyo, U. R., & Wandhini, P. P. (2024). Analisis pengelolaan makanan tak terkonsumsi (food waste) pada kantin kampus UNTIRTA berdasarkan Perda Pengelolaan Sampah. BELEID: Journal of Administrative Law and Public Policy, 2(1), 27–47.

Elvira, C., Sampedro, L., Benítez, E., & Nogales, R. (2014). Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot-scale study. Bioresource Technology, 63(2), 205–211. https://doi.org/10.1016/S0960-8524(97)00128-9

European Environment Agency. (2019). Monitoring CO₂ emissions from passenger cars. European Environment Agency. https://www.eea.europa.eu/publications/co2-emissions-from-cars-2019

FAO. (2011). Global food losses and food waste: Extent, causes and prevention. Rome: FAO. https://doi.org/10.4337/9781788975391

FAO. (2013). Food Wastage Footprint, Impacts on Natural Resources–Technical Report.

Farahdiba, A. U., Warmadewanthi, I. D. A. A., Fransiscus, Y., Rosyidah, E., Hermana, J., & Yuniarto, A. (2023). The present and proposed sustainable food waste treatment technology in Indonesia: A review. Environmental Technology & Innovation, 32, 103256. https://doi.org/10.1016/j.eti.2023.103256

Fernandez, Y. B., Ardiatma, D., & Ilyas, N. (2024). Carbon footprint analysis of food waste from restaurants in Bogor City. Jurnal Info Sains: Informatika dan Sains, 14(2), 45–56.

Handoyo, M. A. P., & Asri, N. P. (2023). Kajian tentang food loss dan food waste: Kondisi, dampak, dan solusinya. Program Studi Teknologi Pangan, Fakultas Pariwisata, Universitas Ciputra Surabaya.

Handoyo, E., & Asri, M. (2023). Regulating food waste management in Indonesia. Indonesia Law Review, 13(1), 1–23. https://doi.org/10.15742/ilrev.v13n1.1413

Kementerian Perencanaan Pembangunan Nasional Republik Indonesia. (2021). Food loss and waste in Indonesia: Supporting the implementation of circular economy and low carbon development (pp. 1–111). Jakarta: Kementerian PPN/Bappenas.

Mahmoud, E., Abdel-Aziz, R. A., & Hassan, H. (2021). Assessment of compost maturity using self-heating tests and chemical parameters. Waste Management, 120, 734–743. https://doi.org/10.1016/j.wasman.2020.11.020

Pérez, T., Vergara, S. E., & Silver, W. L. (2023). Assessing the climate change mitigation potential from food waste composting. Scientific Reports, 13, 7608. https://doi.org/10.1038/s41598-023-34526-2

Sharif, M., Manaf, L. A., & Abdul-Talib, S. (2019). Design and performance of rotary barrel composter for food waste composting. Journal of Environmental Management, 248, 109326. https://doi.org/10.1016/j.jenvman.2019.109326

United Nations Environment Programme. (2021). Food Waste Index Report 2021. Nairobi: UNEP. https://www.unep.org/resources/report/unep-food-waste-index-report-2021

Universitas Diponegoro. (2020). Pengembangan roller composter untuk skala rumah tangga. Universitas Diponegoro Press.

U.S. Environmental Protection Agency. (2018). Greenhouse Gas Equivalencies Calculator. United States Environmental Protection Agency. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

U.S. Environmental Protection Agency. (2022). Greenhouse Gas Emissions from a Typical Passenger Vehicle. United States Environmental Protection Agency. https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle

U.S. Environmental Protection Agency. (2023). Waste Reduction Model (WARM), management practices chapters (Version 16). https://www.epa.gov/warm

Wirasenjaya, F., Dhar, A. R., Oita, A., & Matsubae, K. (2023). Assessment of food-related nitrogen and phosphorus footprints in Indonesia. Sustainable Production and Consumption, 39, 30–41. https://doi.org/10.1016/j.spc.2023.04.011

Wirasenjaya, A., Suryadi, F. X., & Kurniawan, R. (2023). Population projection of Indonesia 2020–2050 based on the 2020 population census. Journal of Population Research, 40(2), 123–145. https://doi.org/10.1007/s12546-023-09277-9

Zhang, Y., Fang, S., Chen, J., Peng, S., & others. (2022). Observed changes in China’s methane emissions linked to policy drivers. Proceedings of the National Academy of Sciences, 119(41), e2202742119. https://doi.org/10.1073/pnas.2202742119

Zhao, X., Zhang, R., Ma, C., & Wang, L. (2023). Dynamics of pH and microbial community succession during composting of organic solid waste. Journal of Environmental Management, 334, 117493. https://doi.org/10.1016/j.jenvman.2023.117493

Downloads

Published

2025-12-30

How to Cite

Rasyif, T. M., Nurul, A., Fatin, A., Hilmayani, S. L., Aly, F., & Hartono, A. C. (2025). PEMANFAATAN SAMPAH ORGANIK UMKM UNTUK MEDIA TANAM BERBASIS KOMPOSTING. Devote: Jurnal Pengabdian Masyarakat Global, 4(4), 1059–1068. https://doi.org/10.55681/devote.v4i4.5151