Implementasi Chatbot AI untuk Rekomendasi Produk Skincare Menggunakan Natural Language Processing
DOI:
https://doi.org/10.55681/jige.v6i2.3802Keywords:
Chatbot, Skincare, NLP, LSTM, Product RecomendationAbstract
The advancement of Artificial Intelligence (AI) technology has significantly contributed to the development of interactive systems, including chatbots. This study aims to implement an AI-based chatbot capable of providing skincare product recommendations by understanding the intent behind users' questions or statements. The methods used in this research include Natural Language Processing (NLP) for natural language understanding, and the Long Short-Term Memory (LSTM) model as a machine learning algorithm for intent classification. Conversational data was collected and processed through text preprocessing stages such as tokenization, stemming, and padding. The LSTM model was trained using a labeled dataset to recognize various user intents, such as product recommendations, product information, and general skincare-related inquiries. Evaluation results showed that the model achieved an accuracy of 80%, with a precision and recall of 85.7% each. Furthermore, the Mean Average Precision (MAP) score, which measures the relevance between user queries and the system’s responses, reached 100%, indicating that all 20 test questions were answered as expected. The implementation of this chatbot is expected to assist users in efficiently selecting skincare products that match their needs, eliminating the need for manual information searching.
Downloads
References
Andarsyah, R., Yuda Pratama, C., & Kishendrian, H. D. (2022). Implementasi Code Coverage Pada Chatbot Telegram Sebagai Media Alternatif Sistem Informasi. Jurnal Teknik Informatika, 14(2), 9568.
Azahra, N. M., & Setiawan, E. B. (2023). Sentence-Level Granularity Oriented Sentiment Analysis of Social Media Using Long Short-Term Memory (LSTM) and IndoBERTweet Method. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 9(1), 85–95. https://doi.org/10.26555/jiteki.v9i1.25765
Bastian Sianturi, T., Cholissodin, I., & Yudistira, N. (2023). Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 7(3), 1101–1107. http://j-ptiik.ub.ac.id
Furqan, M., Sriani, S., & Shidqi, M. N. (2023). Chatbot Telegram Menggunakan Natural Language Processing. Walisongo Journal of Information Technology, 5(1), 15–26. https://doi.org/10.21580/wjit.2023.5.1.14793
Khairunnas, M. F., Arhami, M., & Khadafi, M. (2023). Rancang Bangun Model Name Entity Recognition Menggunakan Metode Backpropagation dalam Klasifikasi Berita Hoaks Seputar Vaksin Covid-19. 6(2), 39–46.
Kosmetik, T. (2024). Jurnal KomtekInfo Penerapan Naive Bayes untuk Memilih Produk Berdasarkan Jenis. 11(4), 274–280. https://doi.org/10.35134/komtekinfo.v11i4.559
Oktavianita, R. P., Sutanto, F. A., & Semarang, U. S. (2024). Rekomendasi Pemilihan Hotel Berbasis Chatbot dengan Framework Rasa Dengan Metode Natural Language Processing ( NLP ). 9, 634–641.
Rustandi, J., & Francisco, L. (2023). Penerapan Artificial Intelligence pada Aplikasi Chatbot sebagai Sistem Pelayanan dan Informasi Online pada Sekolah. 04(03), 421–430.
Shingte, K., Chaudhari, A., Patil, A., Chaudhari, A., & Desai, S. (2021). Chatbot Development for Educational Institute. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3861241
Sudarusman, E., Produk, K., & Pembelian, D. K. (2024). CAKRAWANGSA BISNIS PENGARUH CELEBRITY ENDORSER , KUALITAS PRODUK , DAN HARGA TERHADAP KEPUTUSAN PEMBELIAN PRODUK. 5(2), 1–14.
Supangkat, A. S., & Pudjoprastyono, H. (2022). Pengaruh Brand Image dan Brand Awareness Terhadap Keputusan Pembelian Produk Sariayu Martha Tilaar di Kota Surabaya. Widya Manajemen, 4(2), 140–149. https://doi.org/10.32795/widyamanajemen.v4i2.2875
Utami, N. L., Nazir, A., Budianita, E., & Insani, F. (2024). Jurnal Computer Science and Information Technology ( CoSciTech ) algoritma apriori. 5(1), 75–83.
Wesley, R., & Gunawan, R. (2024). LITERATUR REVIEW : METODE DEEP LEARNING UNTUK ANALISIS TEKS. 8(5), 11020–11023.
Wintoro, P. B., Hermawan, H., Muda, M. A., & Mulyani, Y. (2022). Implementasi Long Short-Term Memory pada Chatbot Informasi Akademik Teknik Informatika Unila. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 12(1), 68. https://doi.org/10.36448/expert.v12i1.2593
Yuniati, Y., & Gurning, F. A. (2024). Pengembangan Chatbot Batik Menggunakan Metode Long Short-Term Memory. 4(2), 753–759.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Siti Nurhaliza, Bustami, Hafizh Al Kautsar Aidilof

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.