Analisis Sentimen pada Ulasan Aplikasi Notion AI dengan Metode Support Vector Machine dan Random Forest
DOI:
https://doi.org/10.55681/sentri.v5i2.5727Keywords:
Analisis Sentimen, Notion AI, Support Vector Machine (SVM), Random Forest, Machine LearningAbstract
In the digital era, the utilization of Artificial Intelligence (AI) has been rapidly expanding across various fields, including information management through applications such as Notion AI. This study aims to analyze user sentiment toward the Notion AI application based on review comments on the Google Play Store using two machine learning algorithms, namely Support Vector Machine (SVM) and Random Forest. The data were obtained via web scraping, comprising 300 review comments, 150 positive and 150 negative. The dataset was then divided into 80% training data and 20% testing data to ensure that the model evaluation was conducted objectively using data that were not involved in the training process. The research process included stages of data collection, preprocessing, classification modeling, model evaluation, data presentation, and analysis using the RapidMiner tool. The results showed that the Random Forest algorithm outperformed SVM, achieving an accuracy of 95.97%, a precision of 98.27%, a recall of 94.34%, and an AUC value of 1.000. Meanwhile, the SVM model produced an accuracy of 85.97% and an AUC of 0.954. This study indicates that Random Forest is more effective in handling variations in text data and provides more accurate classification results. Overall, the majority of user reviews of Notion AI are positive, particularly regarding the ease of AI writing features and productivity enhancement, while negative reviews generally relate to language limitations and paid features.
Downloads
References
M. Ully, Baharuddin, Abraham Manuhutu, and Heru Widoyo, “Penerapan Kecerdasan Buatan Dalam Sistem Informasi: Tinjauan Literatur Tentang Aplikasi, Etika, Dan Dampak Sosial,” Review Pendidikan dan Pengajaran, vol. 6, 2023.
Sari Prabandari and Suhardianto, “Pemanfaatan Artificial Intelligence Untuk Mendukung Pembelajaran Vokasi,” ENCRYPTION: Journal of Information And Technology, vol. 2, no. 2, 2024, doi: 10.58738/encryption.v2i2.489.
E. N. Halim, B. Huda, and A. Elanda, “Perbandingan KNN, Decision Tree Dan Naïve Bayes Untuk Analisis Sentimen Marketplace Bukalapak,” CESS (Journal of Computing Engineering, System and Science), vol. 8, no. 1, 2023.
Rumina, “Tehnik Pengumpulan Data dalam Penelitian Pendidikan,” Jurnal Pendidikan Islam, vol. 2, no. 1, 2024.
D. Rifaldi, Abdul Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet ‘Mental Health,’” Decode: Jurnal Pendidikan Teknologi Informasi, vol. 3, no. 2, 2023, doi: 10.51454/decode.v3i2.131.
A. Syukron, S. Sardiarinto, E. Saputro, and P. Widodo, “Penerapan Metode Smote Untuk Mengatasi Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung,” Jurnal Teknologi Informasi dan Terapan, vol. 10, no. 1, 2023, doi: 10.25047/jtit.v10i1.313.
A. S. Pratikno, A. A. Prastiwi, and S. Ramahwati, “Penyajian Data, Variasi Data, dan Jenis Data,” OSF Preprints, Mar. 2020, doi: 10.31219/OSF.IO/7W8XP.
A. Fauziyah, R. N. A. Ramadhani, and E. P. K. Sari, “Pengolahan dan Analisis Data Untuk MendukungProgram Desa Cinta Statistik di Desa Sokawera,” Indonesian Journal of Community Service and Innovation (IJCOSIN), vol. 4, no. 1, pp. 52–63, Jan. 2024, Accessed: Sep. 26, 2025. [Online]. Available: https://journal.ittelkom-pwt.ac.id/index.php/ijcosin/article/view/1313/416
I. I. Ridho and G. Mahalisa, “ANALISIS KLASIFIKASI DATASET INDEKS STANDAR PENCEMARAN UDARA (ISPU) DI MASA PANDEMI MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM),” Technologia : Jurnal Ilmiah, vol. 14, no. 1, 2023, doi: 10.31602/tji.v14i1.8005.
S. Mahmuda, “Implementasi Metode Random Forest pada Kategori Konten Kanal Youtube,” JURNAL JENDELA MATEMATIKA, vol. 2, no. 01, 2024, doi: 10.57008/jjm.v2i01.633.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Mawadatul Maulidah, Suleman Suleman, Angga Ardiansyah, Erina Rahma, Queen Elizabeth Anggiano Widodo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





