Spatial-Temporal Drought Analysis in Jatirogo Subdistrict Using Normalized Difference Drought Index (2020-2025)

Authors

  • Ainur Rochmah Universitas PGRI Ronggolawe
  • Amaludin Arifia Universitas PGRI Ronggolawe
  • Marita Ika Joesidawati Universitas PGRI Ronggolawe
  • Fajar Rahmawan NRM Peta Alam Indonesia

DOI:

https://doi.org/10.55681/sentri.v5i1.5516

Keywords:

Drought monitoring; Jatirogo; NDDI; Remote sensing; Sentinel-2.

Abstract

Drought is a recurring hydrometeorological hazard in Indonesia, particularly affecting regions with high rainfall variability and rainfed agriculture dependence. This study analyzes spatial-temporal drought patterns in Jatirogo Subdistrict, Tuban Regency, East Java (2020-2025) using the Normalized Difference Drought Index (NDDI) from Sentinel-2 imagery. The methodology involved image preprocessing, NDVI and NDWI calculation, NDDI derivation, and GIS-based drought classification. Results show strong seasonal patterns with peak severity during August-October, where moderate to severe drought dominated 65-80% of the area annually. The most severe conditions occurred in 2023-2024, with NDDI values exceeding 1.0. Villages including Kebonharjo, Sugihan, Demit, Bader, and Sekaran were identified as highly vulnerable. NDDI-based mapping revealed significant correlations with sectoral impacts: severe drought periods (NDDI > 0.8) corresponded with 40-60% crop yield reductions in rainfed paddies, increased irrigation demand, critical groundwater depletion, and elevated food security vulnerabilities among smallholder farmers. This study demonstrates that Sentinel-2 NDDI integration with GIS effectively supports village-level drought monitoring and provides essential spatial information for targeted mitigation strategies, including water resource management, adaptive agricultural planning, and early warning systems.

Downloads

Download data is not yet available.

References

World Bank, “Climate Risk Profile: Indonesia,” Washington, DC, 2021.

A. M. Sukmawati and P. N. Utomo, “Building resilience in Indonesia’s drought-ridden island of Java,” Jun. 2022.

R. A. Aldyan, “The impact of climate change on water resources and food security in Indonesia,” Nov. 2023, doi: 10.62264/jlej.v1i1.2.

Badan Meteorologi, Klimatologi, dan Geofisika (BMKG), “Analisis Iklim dan Kekeringan di Jawa Timur,” Jakarta, 2023.

W. Harjupa and D. Rohmat, “The impacts of global atmospheric circulations on the water supply in select watersheds in the Indonesian Maritime Continent using SPI,” Heliyon, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15604.

R. Adriat, A. Aprilina, H. Satyawardhana, A. Ihwan, and Y. Sutanto, “Identification of variations in the onset of the rainy and dry seasons in Indonesia,” Journal of Bioresources and Environmental Sciences, Jun. 2025, doi: 10.61435/jbes.2025.19960.

Badan Pusat Statistik (BPS), “Statistik Pertanian 2022,” Jakarta, 2023.

V. uli Sihombing, U. Siadari, R. Sari, and M. A. Munthe, “The Impact Of Climate Change On Productivity and Food Security In Indonesia,” Journal of Agri Socio Economics and Business, Dec. 2023, doi: 10.31186/jaseb.5.2.191-202.

C. H. Turnip, K. S. Lumbansiantar, P. Sinaga, A. R. Nasution, E. S. Harahap, and M. B. Dalimunthe, “Dampak Perubahan Iklim Dalam Perekonomian Indonesia,” Sakola, Apr. 2025, doi: 10.57235/sakola.v2i1.5961.

Dinas Pertanian Kabupaten Tuban, “Data pertanian Kabupaten Tuban,” Tuban, 2022.

D. Auliyani, N. Wahyuningrum, A. B. Supangat, and T. M. Basuki, “Prediction of drought vulnerability and its mitigation measures in the Northern Coast of Java, Indonesia,” IOP conference series, Apr. 2022, doi: 10.1088/1755-1315/1016/1/012003.

H. Mulyanti, I. Istadi, and R. Gernowo, “Assessing Vulnerability of Agriculture to Drought in East Java, Indonesia: Application of GIS and AHP,” Geoplanning: Journal of Geomatics and Planning, Oct. 2023, doi: 10.14710/geoplanning.10.1.55-72.

S. Siswanto, K. K. Wardani, B. Purbantoro, A. Rustanto, F. Zulkarnain, E. Anggraheni, R. Dewanti, T. Nurlambang, M. Dimyati, “Satellite-based meteorological drought indicator to support food security in Java Island,” PLOS ONE, Jun. 2022, doi: 10.1371/journal.pone.0260982.

O. F. Olabode, O. F. Olabode, A. D. Adebayo, and O. Y. Ekundayo, “Drought analysis and groundwater prioritization of a typical data-scarce drought-prone hydrological basin using geospatial techniques,” Groundwater for Sustainable Development, May 2021, doi: 10.1016/J.GSD.2021.100581.

A. Dikshit, B. Pradhan, A. Huete, and H.-J. Park, “Spatial based drought assessment: Where are we heading? A review on the current status and future.,” Science of The Total Environment, Jul. 2022, doi: 10.1016/j.scitotenv.2022.157239.

A. Samantaray and G. Messori, “Spatiotemporal Mapping of Drought Impacts Across Continents: A Cluster-Based Approach,” Mar. 2025, doi: 10.5194/egusphere-egu25-4794.

P. T. Trinh and A. Jaafari, “Drought mapping, modeling, and remote sensing,” 2024. doi: 10.1016/b978-0-443-15341-9.00005-8.

Z. Yue, X. Mei, Z. Xu, and S. Zhong, “A Literature Review of Study on Remote Sensing Drought Monitoring System,” Jul. 2024. doi: 10.1109/agro-geoinformatics262780.2024.10660925.

A. Gholinia and P. Abbaszadeh, “Agricultural Drought Monitoring: A Comparative Review of Conventional and Satellite-Based Indices,” Atmosphere, Sep. 2024, doi: 10.3390/atmos15091129.

N. More, “A Complete Study of Remote Sensing- Sentinel-2 Satellite Data for Land Use / Land Cover (LULC) Analysis,” Panamerican Mathematical Journal, Nov. 2024, doi: 10.52783/pmj.v35.i1s.2311.

Y. Gu, E. Hunt, and B. Wardlow, “Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data,” Geophysical Research Letters, vol. 48, no. 5, p. e2020GL091678, 2023.

A. T. Nugroho, B. E. Cahyono, and R. Rahagian, “Validasi indeks kekeringan NDDI untuk pemantauan kekeringan lahan sawah di Jawa Timur,” Jurnal Ilmu Tanah dan Lingkungan, vol. 24, no. 2, pp. 45–58, 2022.

R. Ruqoyah, Y. Ruhiat, and A. Saefullah, “Analisis Klasifikasi Tipe Iklim Dari Data Curah Hujan Menggunakan Metode Schmidt-Ferguson (Studi Kasus: Kabupaten Tangerang),” Jurnal Teori dan Aplikasi Fisika, Feb. 2023, doi: 10.23960/jtaf.v11i1.3076.

M. Siddiqirly, Bustan, and Fahrudin, “Analisis citra satelit Sentinel-2A multispektral berbasis Normalized Difference Drought Index (NDDI) untuk menentukan kekeringan pertanian di Kabupaten Lombok Tengah,” Jurnal Sains Teknologi dan Lingkungan, vol. 2, 2024, doi: 10.29303/jstl.

R. A. Firdaus, E. Hermawan, and N. Kamilah, “Implementasi metode Normalized Difference Drought Index (NDDI) terhadap pemantauan produktivitas pertanian tanaman padi (studi kasus: Kecamatan Jonggol tahun 2019–2022),” INFOTECH Journal, pp. 147–160, 2024.

S. M. A. Letsoin, D. Herak, F. Rahmawan, and R. C. Purwestri, “Land cover changes from 1990 to 2019 in Papua, Indonesia: Results of the remote sensing imagery,” Sustainability, vol. 12, no. 16, p. 6623, 2020, doi: 10.3390/su12166623.

Downloads

Published

2026-01-31

How to Cite

Rochmah, A., Arifia, A., Joesidawati, M. I., & Rahmawan, F. (2026). Spatial-Temporal Drought Analysis in Jatirogo Subdistrict Using Normalized Difference Drought Index (2020-2025). SENTRI: Jurnal Riset Ilmiah, 5(1), 570–584. https://doi.org/10.55681/sentri.v5i1.5516