Analisis Sentimen Mahasiswa terhadap Tugas-Tugas Kuliah dengan Menggunakan Metode K-Nearest Neighbors

Authors

  • Ervina Tryastuti Rahayu Universitas Negeri Surabaya
  • I Gusti Putu Asto Buditjahjanto Universitas Negeri Surabaya

DOI:

https://doi.org/10.55681/sentri.v5i1.5425

Keywords:

Sentiment, Opinion, K-Nearest Neighbors, Accuracy

Abstract

In the rapidly evolving digital era, social media platforms such as Twitter or X have become strategic public spaces for students to express their views, experiences, and criticisms regarding various aspects of academic life. One of the most frequently discussed topics is related to academic assignments, including their workload, relevance, and contribution to students’ understanding of course material. The spontaneous expressions shared on social media contain valuable data that can be scientifically analyzed, particularly to capture students’ perceptions and sentiments toward the learning process. Therefore, sentiment analysis represents a relevant and systematic approach to identifying patterns of student opinions in a measurable and data-driven manner. This study employs a quantitative approach using machine learning methods, specifically the K-Nearest Neighbor (KNN) algorithm, to analyze student sentiment toward academic assignments expressed on the Twitter/X platform. The quantitative approach was selected because it enables the objective processing of numerical data and facilitates statistical interpretation of emerging patterns. Data were collected from student tweets related to academic assignments and subsequently processed through several stages, including text preprocessing, feature extraction, and sentiment classification into positive, neutral, and negative categories. The results indicate that the K-Nearest Neighbor (KNN) algorithm is capable of classifying student sentiment with an accuracy rate of 85%, demonstrating that this method is sufficiently effective for sentiment analysis in an educational context. The sentiment distribution reveals that 30% of students expressed positive sentiment, perceiving academic assignments as relevant and challenging, while 40% showed neutral sentiment. Meanwhile, the remaining 30% conveyed negative sentiment, indicating that assignments were perceived as excessively demanding and less relevant to the learning process. These findings provide important insights for educators and educational institutions in evaluating and designing academic assignments that are more effective, balanced, and aligned with students’ learning needs.

Downloads

Download data is not yet available.

References

A. Tanggu Mara, E. Sediyono, and H. Purnomo, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Metode Pembelajaran Dalam Jaringan (DARING) Di Universitas Kristen Wira Wacana Sumba,” Jointer - Journal of Informatics Engineering, vol. 2, no. 01, pp. 24–31, Jun. 2021, doi: 10.53682/jointer.v2i01.30.

Husdi and Andi Kamaruddin, “Auto Labeling Untuk Analisis Sentimen Opini Mahasiswa Baru Terhadap Pembelajaran Mata Kuliah Dengan Algoritma K-Nearest Neighbor,” Jurnal RESTIKOM : Riset Teknik Informatika dan Komputer, vol. 6, no. 1, pp. 148–157, Apr. 2024, doi: 10.52005/restikom.v6i1.311.

A. Halimi, K. Kusrini, and M. R. Arief, “ANALISIS SENTIMEN MASYARAKAT INDONESIA TERHADAP PEMBELAJARAN ONLINE DARI DI MEDIA SOSIAL TWITTER MENGGUNAKAN LEXICON DAN K-NEAREST NEIGHBOR,” COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi, vol. 2, no. 1, pp. 18–28, Aug. 2021, doi: 10.33650/coreai.v2i1.2283.

R. Gunawan, R. Septiadi, F. Apri Wenando, H. Mukhtar, and Syahril, “K-Nearest Neighbor (KNN) untuk Menganalisis Sentimen terhadap Kebijakan Merdeka Belajar Kampus Merdeka pada Komentar Twitter,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 3, no. 2, pp. 152–158, Aug. 2022, doi: 10.37859/coscitech.v3i2.3841.

S. Arikunto, Prosedur Penelitian. Rineka Cipta, 2019.

M. Furqan, S. Sriani, and S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,” Techno.Com, vol. 21, no. 1, pp. 51–60, Feb. 2022, doi: 10.33633/tc.v21i1.5446.

S. J. Cai, “Sentiment analysis using natural language processing and machine learning,” Journal of Data Acquisition and Processing, vol. 38, no. 2, 2023, doi: https://doi.org/10.5281/zenodo.7766376.

C. C. Aggarwal, “Machine Learning for Text: An Introduction,” in Machine Learning for Text, Cham: Springer International Publishing, 2018, pp. 1–16. doi: 10.1007/978-3-319-73531-3_1.

J. Yadav, “Sentiment Analysis on Social Media,” Jan. 09, 2023. doi: 10.32388/YF9X04.

J. Silge and D. Robinson, Text mining with R. O’Reilly Media, 2017.

J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 74–80, Mar. 2023, doi: 10.33365/jatika.v4i1.2468.

F. A. Juliasari and D. A. Sihombing, “Analisis Persepsi Kemudahan Penggunaan Dan Persepsi Manfaat Terhadap Minat Pembelian Konsumen Gofood Di Kalangan Mahasiswa Ibm Asmi,” NCBMA (Universitas Pelita Harapan Indonesia).

S. Yusuf and Nurihsan, Pengembangan Program Bimbingan dan Konseling di Sekolah. Bandung: Remaja Rosdakarya. Remaja Rosdakarya, 2019.

A. R. Safira, H. K. Sirajuddin, A. Khairan, and A. Mubarak, “Penerapan algoritma K-nearest neighbor dalam rekomendasi keminatan mahasiswa (Studi kasus: Program Studi Teknik Sipil Universitas Khairun),” JATI (Jurnal Jaringan dan Teknologi Informasi), vol. 3, no. 2, pp. 6–12, 2024, doi: https://doi.org/10.0000/jati.

R. F. Tanjung, N. Neviyarni, and F. Firman, “LAYANAN INFORMASI DALAM PENINGKATAN KETERAMPILAN BELAJAR MAHASISWA STKIP PGRI SUMATERA BARAT,” Jurnal Penelitian Bimbingan dan Konseling, vol. 3, no. 2, Sep. 2018, doi: 10.30870/jpbk.v3i2.3937.

R. Mustofa, H. Irawadi, H. S. Lemana, and M. Ridwan, “Aktivitas Latihan Mahasiswa Prodi Pendidikan Kepelatihan Olahraga FIK UNP,” Jurnal Patriot, vol. 2, no. 2, pp. 743–756, 2020.

Nika Sintesa, “Analisis Pengaruh Time Management Terhadap Kedisiplinan dan Akademik Mahasiswa,” Trending: Jurnal Manajemen dan Ekonomi, vol. 1, no. 1, pp. 36–46, Dec. 2022, doi: 10.30640/trending.v1i1.465.

Syamsudin, W. Rachmawanto, and T. W. Astuti, “Dukungan Keluarga Terhadap Prestasi Belajar Mahasiswa Tingkat III Semester VI,” Jurnal Keperawatan, vol. 8, no. 2, pp. 27–35, 2022.

C. Leonita and L. Tulistyantoro, “Perancangan Interior Coffee Shop dengan Fasilitas Belajar untuk Mahasiswa di Denpasar,” INTRA, vol. 6, no. 1, pp. 15–23, 2017.

R. I. Borman, B. Priyopradono, and A. R. Syah, “Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (BISINDO),” SNIA, pp. 1–4, 2018.

M. Marsono, A. H. Nasyuha, S. N. Arif, M. Zunaidi, and N. Y. L. Gaol, “Implementasi Algoritma K-Nearest Neighbor Dalam Mendiagnosis Kurap Pada Kucing,” Journal of Computer System and Informatics (JoSYC), vol. 4, no. 1, pp. 61–65, Nov. 2022, doi: 10.47065/josyc.v4i1.2479.

R. Samuel, R. Natan, and U. Syafiqoh, “Application of Cosine Similarity and K-Nearest Neighbor (K-NN) in Classification and Book Search,” Journal of Big Data Analytic and Artificial Intelligence, vol. 1, no. 1, pp. 9–14, 2018.

A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indonesian Journal of Data and Science, vol. 1, no. 2, pp. 29–33, Jul. 2020, doi: 10.33096/ijodas.v1i2.11.

M. Misdram and A. Cahyono, “Optimasi Komposisi Makanan Untuk Penderita Anemia Menggunakan Metode Variable Neighborhood Search,” Spirit, vol. 13, no. 1, pp. 28–34, 2021, doi: 10.53567/spirit.v13i1.201.

D. S. Wisdayani, I. M. Nur, and R. Wasono, “Penerapan Algoritma K-Nearest Neighbor dalam Klasifikasi Tingkat Keparahan Korban Kecelakaan Lalu Lintas di Kabupaten Jawa Tengah,” in Prosiding Mahasiswa Seminar Nasional Unimus, 2019, pp. 373–380.

A. Heriyanto, “Penerapan Metode K-Nearest Neighbor (KNN) Untuk Klasifikasi Stanting Pada Balita,” Publikasi Ilmiah Universitas Muhammadiyah Jember.

H. Sulistiani, I. Darwanto, and I. Ahmad, “Penerapan Metode Case Based Reasoning,” Jurnal Edukasi Dan Penelitian Informatika, vol. 6, no. 1, pp. 23–38, 2020.

Y. D. Alfiyanti, “KLASIFIKASI FUNGSI SENYAWA AKTIF DATA BERDASARKAN KODE SIMPLIFIED MOLECULAR INPUT LINE ENTRY SYSTEM ( SMILES ) MENGGUNAKAN METODE MODIFIED K - NEAREST,” 2018.

P. Kelulusan, “PREDIKSI KELULUSAN MAHASISWA MENGGUNAKAN K-NEAREST NEIGHBOR BERBASIS PARTICLE SWARM OPTIMIZATION Nursetia Wati,” Jtii, vol. 6, no. 2, pp. 118–127, 2021.

W. Nugroho, “Optimasi Metode K-Nearest Neighbours dengan Backward Elimination Menggunakan Dataset Software Effort Estimation Bianglala Informatika,” Bianglala Informatika, vol. 8, no. 2, pp. 129–133, 2020.

J. Riany, M. Fajar, and M. P. Lukman, “Penerapan deep sentiment analysis pada angket penilaian terbuka menggunakan K-nearest neighbor,” Jurnal SISFO: Inspirasi Profesional Sistem Informasi, vol. 6, no. 1, pp. 147–156, 2016, doi: https://doi.org/10.24089/j.sisfo.2016.09.011.

T. W. Putra, Triayudi. A, and Andrianingsih, “Analisis sentimen pembelajaran daring menggunakan metode Naïve Bayes, KNN, dan Decision Tree,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi, vol. 6, no. 1, pp. 20–26, 2022, doi: https://doi.org/10.35870/jtik.v6i1.368.

A. Deviyanto, “Penerapan analisis sentimen pada pengguna Twitter menggunakan metode K-Nearest Neighbor,” Jurnal Ilmiah Sistem Komputer dan Aplikasi (JISKA), vol. 3, no. 1, 2018, doi: https://doi.org/10.14421/JISKA.2018.31-01.

L. F. Narulita, “Analisa sentimen pada tinjauan buku dengan algoritma k-nearest neighbour,” KONVERGENSI, vol. 13, no. 2, pp. 76–81, 2017, doi: https://doi.org/10.30996/konv.v13i2.2758.

Sugiyono, Metode Penelitian Kuantitatif, Kualitatif dan R&D, 4th ed. Alfabeta, 2022.

Sugiyono, Metode Penelitian Pendekatan Kuantitatif, Kualitatif, dan R&D. Alfabeta, 2020.

F. Z. Tala, “A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia,” 2003.

A. Tanggu Mara, E. Sediyono, and H. Purnomo, “Penerapan Algoritma K-Nearest Neighbors Pada Analisis Sentimen Metode Pembelajaran Dalam Jaringan (DARING) Di Universitas Kristen Wira Wacana Sumba,” Jointer - Journal of Informatics Engineering, vol. 2, no. 01, pp. 24–31, Jun. 2021, doi: 10.53682/jointer.v2i01.30

Downloads

Published

2026-01-31

How to Cite

Rahayu, E. T., & Buditjahjanto, I. G. P. A. (2026). Analisis Sentimen Mahasiswa terhadap Tugas-Tugas Kuliah dengan Menggunakan Metode K-Nearest Neighbors. SENTRI: Jurnal Riset Ilmiah, 5(1), 465–479. https://doi.org/10.55681/sentri.v5i1.5425