Analisis Model Convolutional Neural Network Berbasis Fitur pada Sobel Edge Detection untuk Deteksi Tingkat Keausan Ban Mobil

Authors

  • Fahreza Syahrul Ramadhan Universitas Teknologi Yogyakarta
  • Muhammad Zakariyah Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.55681/sentri.v4i12.5190

Keywords:

Ban, Deteksi Keausan Ban, CNN, Edge Detection, Keselamatan Kendaraan

Abstract

Car tires play a crucial role in ensuring the safety of drivers and passengers. Tire wear that is not properly identified can reduce vehicle stability and traction, thereby increasing accident risk. Conventional tire wear assessment is generally carried out through manual visual inspection, which is subjective and prone to inconsistency, leading to potential misjudgment of actual wear conditions. This study proposes an automatic tire wear detection system using a Convolutional Neural Network (CNN) combined with an edge detection approach to provide a more objective and accurate assessment. The research stages include data preprocessing, dataset construction, and system evaluation. Model performance was tested using two data partitioning strategies, namely random and stratified classification, while maintaining the same architectural configuration consisting of HiddenL64, 10 epochs, maxpooling2, and iterationmax 20. The evaluation aimed to compare detection performance across both classification schemes. The experimental results indicate variations in training and testing accuracy between the two methods. The CNN model achieved its best performance under the random classification approach, with training accuracy reaching 99.15% and testing accuracy of 86.62% using a 90%–10% data split. Despite these results, the observed performance gap between training and testing data suggests that model generalization is still influenced by dataset size and distribution, indicating potential overfitting. Therefore, the findings should be interpreted within the scope of the experimental setup and dataset limitations. Overall, the proposed CNN-based system demonstrates promising capability for automatic tire wear classification and has potential to support preventive maintenance and timely tire replacement in automotive applications to improve road safety.

Downloads

Download data is not yet available.

References

K. Prayoga, R. Magdalena, and S. Saidah, “Sistem Deteksi Kecacatan Ban Dengan Convolutional Neural Network,” e-Proceeding Eng., vol. 10, no. 3, pp. 2229–2234, 2023.

L. Listyalina, I. Buyung, A. Q. Munir, I. Mustiadi, and D. A. Dharmawan, “Conv-Tire: Tire Feasibility Assessment using Convolutional Neural Networks Conv-Tire: Asesmen Kelayakan Ban berbasis Convolutional Neural Network,” J. Inform. dan Teknol. Inf., vol. 19, no. 3, pp. 323–336, 2022, doi: 10.31515/telematika.v19i3.7697.

Nugroho Febriyanto, Cahya Rahmad, and C. B. Vista, “Deteksi Kerusakan Dan Kelayakan Ban Mobil Berdasarkan Ekstraksi Tekstur Menggunakan Gray Level Cooccurrence Matrix Dengan Metode Jaringan Syaraf Tiruan,” J. Inform. Polinema, vol. 7, no. 4, pp. 27–32, 2021, doi: 10.33795/jip.v7i4.469.

L. Utari and A. Zulfikar, “Penerapan Convolutional Neural Networks Menggunakan Edge Detection Untuk Identifikasi Motif Jenis Batik,” TeknoIS J. Ilm. Teknol. Inf. dan Sains, vol. 13, no. 1, pp. 110–123, 2023, doi: 10.36350/jbs.v13i1.184.

M. Toyib, T. Decky, and K. Pratama, “Penerapan Algoritma CNN Untuk Mendeteksi Tulisan Tangan AngkaRomawi dengan Augmentasi Data,” urnal Mat. Ilmu Pengetah. Alam, Kebumian dan Angkasa, vol. 2, no. 3, pp. 108–120, 2024.

A. Urfiandi, “Analisis Tingkat Keausan TerhadapPemakaian Ban Merek A, B Dan CMenggunakan Ban Standar 90/90-1446 P,” Surya Tek., vol. 8, no. 1, pp. 282–288, 2018.

A. L. A. Shidiq, E. SUhartono, and S. Saidah, “Klasifikasi Kecacatan Ban Untuk Mengendalikan Kualitas Produk Menggunakan Model CNN Dengan Arsitektur VGG-16 Classification Of Tire Defect To Control Product Quality Using Cnn Model With VGG-16 Architecture,” e-Proceeding Eng., vol. 8, no. 6, pp. 3216–3225, 2022.

H. M. Zangana, A. K. Mohammed, and F. Mahmood Mustafa, “Advancements in Edge Detection Techniques for Image Enhancement: A Comprehensive Review,” Int. J. Artif. Intell. Robot., vol. 6, no. 1, pp. 29–39, 2024, doi: 10.25139/ijair.v6i1.8217.

I. G. Prahmana and K. A. Br Sitepu, “Identification of land and water Centella asiatica leaf herbal plants using digital imagery with the Sobel Edge Detection algorithm,” J. Artif. Intell. Eng. Appl., vol. 2, no. 2, pp. 48–52, 2023, doi: 10.59934/jaiea.v2i2.158.

Y. M. R. Et.al, “Detection of Tumors From MRI Brain Images Using CNN With Extensive Augmentation,” Turkish J. Comput. Math. Educ., vol. 12, no. 6, pp. 50–55, 2021, doi: 10.17762/turcomat.v12i6.1266.

Z. Tuasamu et al., “Analisis Sistem Informasi Akuntansi Siklus Pendapatan Menggunakan DFD Dan Flowchart Pada Bisnis Porobico,” J. Bisnis dan Manajemen(JURBISMAN), vol. 1, no. 2, pp. 495–510, 2023.

A. S. Putra and K. Haryono, “Implementasi Object Oriented Metodologi dan UML pada Pengembangan Sistem Informasi Keuangan Organisasi,” Automata, vol. 2, pp. 1–12, 2021.

Downloads

Published

2025-12-31

How to Cite

Ramadhan, F. S., & Zakariyah, M. (2025). Analisis Model Convolutional Neural Network Berbasis Fitur pada Sobel Edge Detection untuk Deteksi Tingkat Keausan Ban Mobil. SENTRI: Jurnal Riset Ilmiah, 4(12), 4425–4445. https://doi.org/10.55681/sentri.v4i12.5190