Rancang Bangun Model Haar Cascade Classifier untuk Deteksi Jentik Nyamuk Otomatis pada Citra Digital

Authors

  • Sigit Sugiharto Universitas Widya Husada Semarang
  • Okti Trihastuti Dyah Retnaningrum Universitas Widya Husada Semarang

DOI:

https://doi.org/10.55681/sentri.v4i10.4675

Keywords:

jentik nyamuk, haar cascade, adaboost, classifier, deteksi

Abstract

Mosquito larvae are an important indicator in disease vector surveillance activities, such as dengue fever (DHF). However, the relatively small size of larvae and their random movement in water media make manual observation difficult, time-consuming, and potentially lead to errors in identification. These conditions encourage the need to develop technology-based detection methods that can provide faster, more accurate, and consistent results. The purpose of this study is to build a Haar Cascade model to detect the presence of mosquito larvae in digital images. The research stage begins with collecting a dataset in the form of positive images containing mosquito larvae objects and negative images containing water backgrounds without larvae. Next, the training process is carried out using the Haar Cascade algorithm that utilizes Haar feature extraction through integral images and a classification process with AdaBoost. The resulting model has successfully detected mosquitoes and met the minHitRate target (HR ≥ 0.995), however, the false alarm rate is still quite high, averaging 0.41, so further optimization is still needed to reduce the False Alarm Rate. This study shows that the Haar Cascade method can be used to detect mosquito larvae with a fairly good success rate, but false detections still occur so the model still needs to be improved.

Downloads

Download data is not yet available.

References

“Mengenal Nyamuk Penular Demam Berdarah - DINAS KESEHATAN PROVINSI NTB.” Accessed: Mar. 20, 2025. [Online]. Available: https://dinkes.ntbprov.go.id/artikel/mengenal-nyamuk-penular-demam-berdarah/

I. Maulana Rahmansyah, D. Novitasari, P. Studi Kesehatan Masyarakat, F. Teknologi dan Manajemen Kesehatan, and I. Ilmu Kesehatan Bhakti Wiyata Kediri, “Identifikasi Vektor Jentik dan Nyamuk,” Jurnal Kesehatan Masyarakat Indonesia (JKMI), vol. 1, no. 4, pp. 69–75, Jun. 2024, doi: 10.62017/JKMI.V1I4.1613.

L. A. Maltseva, L. V. Novytska-Usenko, V. V. Nykonov, and T. V. Kanchura, “Sepsis-associated acute kidney injury,” Emergency Medicine (Ukraine), vol. 17, no. 6, pp. 44–50, 2021, doi: 10.22141/2224-0586.17.6.2021.242326.

“Haar Cascade Algorithm - Tpoint Tech.” Accessed: Mar. 20, 2025. [Online]. Available: https://www.tpointtech.com/haar-cascade-algorithm

S. Sunardi, A. Yudhana, and M. A. Talib, “Perancangan Sistem Pengenalan Wajah untuk Keamanan Ruangan Menggunakan Metode Local Binary Pattern Histogram,” Jurnal Teknologi Elektro, vol. 13, no. 2, p. 123, Jun. 2022, doi: 10.22441/JTE.2022.V13I2.010.

M. G. Grech et al., “Mosquito (Diptera: Culicidae) larval ecology in natural habitats in the cold temperate Patagonia region of Argentina,” Parasit Vectors, vol. 12, no. 1, pp. 1–14, May 2019, doi: 10.1186/S13071-019-3459-Y/FIGURES/4.

M. Avramov et al., “Relationships between water quality and mosquito presence and abundance: a systematic review and meta-analysis,” J Med Entomol, vol. 61, no. 1, p. 1, Jan. 2023, doi: 10.1093/JME/TJAD139.

“Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue Virus Transmission | Zootaxa.” Accessed: Aug. 18, 2025. [Online]. Available: https://mapress.com/zt/article/view/zootaxa.589.1.1

H. A. K. Ranasinghe and L. D. Amarasinghe, “Naturally Occurring Microbiota Associated with Mosquito Breeding Habitats and Their Effects on Mosquito Larvae,” Biomed Res Int, vol. 2020, p. 4065315, 2020, doi: 10.1155/2020/4065315.

N. Burkett-Cadena, “Morphology of Adult and Larval Mosquitoes”.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, doi: 10.1109/CVPR.2001.990517.

Downloads

Published

2025-10-31

How to Cite

Sugiharto, S., & Retnaningrum, O. T. D. (2025). Rancang Bangun Model Haar Cascade Classifier untuk Deteksi Jentik Nyamuk Otomatis pada Citra Digital. SENTRI: Jurnal Riset Ilmiah, 4(10), 2670–2679. https://doi.org/10.55681/sentri.v4i10.4675