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Abstract: Drought is a recurring hydrometeorological disaster that poses a serious 

threat to agricultural productivity and food security, particularly in rain-fed 

agricultural regions of Indonesia's northern coastal areas. Tambakboyo District, 

Tuban Regency, is characterized by high dependence on seasonal rainfall, limited 

irrigation infrastructure, and fluctuating climatic conditions, making it highly 

vulnerable to agricultural drought. This study aims to analyze the spatiotemporal 

patterns of agricultural drought in Tambakboyo District during the period 2020–2025 

using the Normalized Difference Drought Index (NDDI) derived from Sentinel-2 

satellite imagery. Sentinel-2 Level-2A surface reflectance data from September to 

December for each study year were processed to calculate the Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI), which 

were subsequently combined to generate NDDI values. Drought severity was classified 

into five categories ranging from normal to very severe drought. The results indicate a 

consistent seasonal drought pattern, with drought intensity beginning to increase in 

September, peaking in October–November, and declining in December with the onset 

of the rainy season. The most severe drought conditions occurred in 2022, when 68.5% 

of the district area (approximately X hectares or Y km²) experienced severe to very 

severe drought, with Z hectares classified as severely impacted and W hectares under 

very severe drought conditions. Spatial analysis revealed that Kenanti, Gadon, and 

Plajan villages were persistently identified as drought-prone areas throughout the study 

period. These findings demonstrate the effectiveness of NDDI for monitoring 

agricultural drought in rain-fed farming systems and highlight its potential application 

for drought mitigation planning, early warning systems, and sustainable water 

resource management at the local scale. 
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INTRODUCTION 

Drought represents a significant hydrometeorological challenge affecting agricultural 
productivity and water resource availability in Indonesia, particularly in rain-fed farming 
regions [1]. The northern coastal areas of East Java experience distinct climatic patterns 

characterized by prolonged dry seasons and erratic rainfall, making them particularly 
susceptible to agricultural drought. Tambakboyo District in Tuban Regency exemplifies 
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these vulnerable conditions, with its economy heavily dependent on rain-fed agriculture 
and limited irrigation infrastructure [2]. 

Traditional drought monitoring methods, primarily relying on point-based rainfall 
data from meteorological stations, offer limited spatial coverage and cannot adequately 
represent drought distribution across heterogeneous landscapes [3]. This spatial limitation 

necessitates alternative approaches for comprehensive drought assessment. Remote 
sensing technology has emerged as a powerful tool for drought monitoring, providing 

synoptic coverage and temporal consistency through vegetation and water content indices 
derived from satellite imagery [4]. 

The Normalized Difference Drought Index (NDDI), developed from the 
combination of Normalized Difference Vegetation Index (NDVI) and Normalized 

Difference Water Index (NDWI), offers a robust approach for agricultural drought 

detection by simultaneously considering vegetation stress and soil moisture deficit 
(Affandy et al., 2024). Sentinel-2 satellite imagery, with its high spatial resolution (10-20 

m) and frequent revisit time (5 days), provides optimal data for drought analysis in small-
scale agricultural landscapes. 

Agricultural drought severity in Indonesia is strongly influenced by large-scale 
climate phenomena, particularly the El Niño-Southern Oscillation (ENSO). El Niño 

events are associated with reduced rainfall and prolonged dry seasons across Indonesia, 
leading to increased drought risk and agricultural losses [7]. Conversely, La Niña 
conditions typically bring above-average rainfall, potentially mitigating drought conditions 

[8]. In East Java, ENSO-related climate variability significantly impacts seasonal rainfall 
distribution, with El Niño years experiencing up to 40% rainfall reduction during critical 

growing periods [9]. Understanding the temporal relationship between ENSO phases and 
drought index variations is crucial for developing climate-informed early warning systems 

and adaptive agricultural management strategies [10]. However, the specific influence of 
ENSO on drought dynamics in Tuban's northern coastal zone remains poorly 
documented. 

Previous studies have demonstrated NDDI's effectiveness in various Indonesian 
regions. Research in Jonggol District, Bogor Regency established correlations between 

NDDI values and reduced rice productivity [5]. Similarly, studies in Eromoko, Central 
Java successfully mapped agricultural dryness using NDDI algorithms [6]. However, 

comprehensive multi-temporal analyses focusing on the unique geophysical and climatic 
context of East Java's northern coastal areas remain limited, particularly regarding the 
interaction between global climate drivers and local drought manifestations. 

This study addresses this research gap by conducting a six-year (2020-2025) 
spatiotemporal analysis of agricultural drought in Tambakboyo District using the NDDI 

approach. The research objectives are: (1) to analyze temporal drought patterns and 

identify peak drought periods; (2) to map spatial drought distribution and identify 

consistently vulnerable villages; (3) to examine the relationship between ENSO phases and 
annual NDDI variations; and (4) to evaluate the relationship between drought intensity 
and seasonal variations. The findings are expected to provide a scientific basis for targeted 

drought mitigation strategies in Tambakboyo and similar regions, including climate-
responsive early warning systems.  
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THEORETICAL FRAMEWORK 
Agricultural drought refers to a condition in which soil moisture availability becomes 

insufficient to meet crop water requirements, resulting in reduced vegetation growth and 

agricultural productivity. Unlike meteorological drought, which is defined primarily by 
rainfall deficits, agricultural drought is closely related to vegetation response, soil 

characteristics, and water availability within the plant root zone [1]. In rain-fed agricultural 
systems, agricultural drought is strongly influenced by seasonal climate variability and 
limited irrigation infrastructure, making agricultural production highly vulnerable to 

prolonged dry periods. 
Remote sensing has been widely applied in agricultural drought assessment due to its 

ability to provide spatially continuous and temporally consistent observations across large 
areas. Satellite-based approaches allow drought conditions to be monitored efficiently by 

analyzing vegetation condition and surface moisture dynamics [3]. Furthermore, advances 
in remote sensing technology have improved the accuracy of drought detection through 
the use of spectral indices derived from multispectral imagery [4]. 

Among commonly used spectral indices, the Normalized Difference Vegetation 
Index (NDVI) is utilized to represent vegetation greenness and photosynthetic activity, 

which decrease under drought stress conditions [7]. Meanwhile, the Normalized 
Difference Water Index (NDWI) reflects vegetation and soil moisture content and is 

sensitive to changes in water availability within agricultural landscapes [8]. 
The Normalized Difference Drought Index (NDDI) combines NDVI and NDWI to 

provide a more comprehensive indicator of agricultural drought by simultaneously 

capturing vegetation stress and moisture deficit. Higher NDDI values indicate drier 
conditions characterized by reduced vegetation vigor and limited water availability [9] The 

effectiveness of NDDI for mapping agricultural drought intensity and spatial distribution 
has been demonstrated in several studies conducted in Indonesia, including research in 

Jonggol District by Firdaus et al. (2024) and in Eromoko District by Mujiyo et al. (2023). 
[5], [6]. 

Sentinel-2 satellite imagery is particularly suitable for agricultural drought analysis 

due to its high spatial resolution and frequent revisit cycle, which enable detailed 
monitoring of small-scale agricultural areas [10]. The application of Sentinel-2 data for 

land and vegetation analysis has also been successfully implemented in various agricultural 
studies in Indonesia [11]. Therefore, the integration of Sentinel-2 imagery and the NDDI 

approach provides a strong theoretical foundation for spatiotemporal analysis of 
agricultural drought in rain-fed regions such as Tambakboyo District. 

RESEARCH METHODS 
3.1. Study Area  

Tambakboyo District is located in Tuban Regency, East Java Province, Indonesia, 
between 111.75°-111.85°E longitude and 6.85°-6.95°S latitude (Figure 1). The district 

covers approximately 8,742 hectares and comprises 14 villages with predominantly 
agricultural land use. The region experiences a tropical monsoon climate with distinct wet 

(November-April) and dry (May-October) seasons. Average annual rainfall ranges from 
1,500-2,000 mm, with high interannual variability. The district's economy is primarily 

agricultural, with maize, rice, and secondary crops as main commodities.  
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Figure 1. Research location 

3.2. Data Collection  

This study utilized Sentinel-2 Multispectral Instrument (MSI) Level-2A surface 

reflectance data acquired from the Copernicus Open Access Hub. Images from September 
to December for the years 2020-2025 were selected to capture peak and transitional dry 

season conditions. The specific bands used were Band 4 (Red, 665 nm), Band 8 (NIR, 842 
nm), and Band 11 (SWIR, 1610 nm). Cloud-free or minimally cloud-covered scenes (<10% 
cloud cover) were prioritized. Administrative boundary data for Tambakboyo District was 

obtained from the Geospatial Information Agency (BIG). Additional climatic data, 
including monthly rainfall records and ENSO phase information (Oceanic Niño Index), 

were obtained from the Indonesian Meteorological, Climatological, and Geophysical 
Agency (BMKG) and NOAA Climate Prediction Center to support correlation analysis. 

3.3. Data Processing  

The research workflow comprised four main stages: data preprocessing, index 
calculation, drought classification, and spatiotemporal analysis (Figure 2). A 

comprehensive data processing flowchart is presented in Figure 3 to illustrate the 
systematic methodology following standard GIS research protocols. 

Image preprocessing: Sentinel-2 Level-2A Bottom-of-Atmosphere reflectance data 
were used, eliminating the need for additional atmospheric correction. Cloud masking was 

performed using the Scene Classification Layer, with pixels classified as cloud or cloud 
shadow excluded from analysis. Images were clipped to the Tambakboyo District 
boundary using QGIS software.  

Index calculation: Three spectral indices were calculated:  
 

 
 

Figure 2. Research workflow for drought analysis using NDDI 
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Figure 3. Data Processing Flowchart 

3.3.1. Image Preprocessing 
Sentinel-2 Level-2A Bottom-of-Atmosphere (BOA) reflectance data were used, 

eliminating the need for additional atmospheric correction. The preprocessing steps 
included: 

1. Data acquisition and quality assessment: Sentinel-2 imagery was downloaded and 
metadata reviewed to ensure <10% cloud coverage. 

2. Cloud masking: Scene Classification Layer (SCL) was applied to identify and 

exclude pixels classified as cloud, cloud shadow, and cirrus. 
3. Geometric correction verification: Coordinate system verification (WGS 1984 

UTM Zone 49S) and geometric accuracy assessment. 
4. Study area extraction: Images were clipped to Tambakboyo District administrative 

boundary using vector overlay analysis in QGIS software. 
5. Radiometric quality control: Visual inspection and statistical analysis of reflectance 

values to detect anomalies. 

 

3.3.2. Spectral Index Calculation 
Three spectral indices were calculated using raster calculator functions: 

1. Normalized Difference Vegetation Index (NDVI): 

                                 𝑁𝐷𝑉𝐼 =
(NIR−RED)

(NIR+RED)
                                                             (1) 
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Where B8 is Near-Infrared band (842 nm) and B4 is Red band (665 nm). 
 

2. Normalized Difference Water Index (NDWI): 

                                                         𝑁𝐷𝑊𝐼 =
(NIR−SWIR)

(NIR+SWIR)
                                                             (2) 

 
Where B8 is Near-Infrared band (842 nm) and B11 is Short-Wave Infrared band 

(1610 nm). 
3. Normalized Difference Drought Index (NDDI): 

                                       𝑁𝐷𝐷𝐼 =
(NDVI−NDWI)

(NDVI+NDWI)
                                                           (3) 

      

3.3.3. Drought Classification 

NDDI values were classified into five drought categories based on thresholds 

established by Firdaus et al. (2024) using reclassification tools (Table 1). The classification 
was implemented through supervised reclassification in GIS environment, generating 

categorical raster datasets for each observation period. 
 

Table 1. Drought classification based on NDDI values 
NDDI Range Drought Category Description 

< 0.01 Normal Adequate soil moisture 

0.01 - 0.15 Mild Drought Slight water stress 

0.15 - 0.25 Moderate Drought Moderate water stress 

0.25 - 1.00 Severe Drought Significant water stress 

≥ 1.00 Very Severe Drought Extreme water deficit 

 

3.3.4. Spatial and Temporal Analysis 
Spatial analysis: 

1. Drought mapping: Thematic maps were generated for each month (September-

December) across all study years using cartographic visualization techniques. 
2. Area calculation: Zonal statistics were applied to calculate area (hectares and 

percentage) for each drought category. 
3. Hotspot identification: Persistent drought-prone areas were identified through 

overlay analysis of multi-temporal drought maps. 

4. Village-level assessment: Drought severity was aggregated by administrative 
boundaries to identify vulnerable villages. 

 
Temporal analysis: 

1. Monthly trend analysis: Drought progression patterns within each year were 

examined through time-series comparison. 
2. Annual variation analysis: Inter-annual drought variability (2020-2025) was 

assessed using statistical comparison. 
3. Seasonal pattern identification: Correlation between drought onset/peak periods 

and seasonal transitions was analyzed. 
4. ENSO correlation: Pearson correlation coefficient was calculated between annual 

NDDI values and Oceanic Niño Index (ONI) to examine climate teleconnection 
influences. 
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3.3.5. Validation and Accuracy Assessment 
Ground truth validation was conducted through: 

1. Field observation: Representative sampling points were selected based on stratified 

random sampling across drought categories. 
2. Farmer interviews: Qualitative assessment of drought impacts on agricultural 

productivity. 
3. Rainfall data comparison: NDDI patterns were cross-validated with rainfall 

anomaly data from BMKG meteorological stations. 

4. Accuracy metrics: Classification accuracy was evaluated using confusion matrix 
and overall accuracy percentage. 

 
All spatial analyses were performed using QGIS 3.28 and GRASS GIS, while 

statistical analyses were conducted using R Statistical Software version 4.3. Spatial and 
Temporal Analysis: Drought maps were generated for each month (September-December) 
across all study years. The area for each drought category was calculated in hectares. 

Temporal trends were analyzed by comparing monthly and annual drought patterns. 
Spatial patterns were examined to identify consistently vulnerable villages.  

RESULTS AND DISCUSSION 

Temporal Drought Patterns  
Analysis of NDDI values from 2020 to 2025 revealed consistent seasonal drought 

patterns in Tambakboyo District (Figure 3). Drought intensity typically begins to increase 

in September, peaks in October-November, and gradually decreases in December with the 
onset of the rainy season. The most severe drought conditions were observed in 2022, when 

68.5% of the total district area experienced severe to very severe drought in October (Table 
2).  

 

Table 2. Percentage area under severe to very severe drought (October) 
 

Year Area (%) Remarks 

2020 38.7% Moderate 

drought year 

2021 45.2% Above average 

drought 

2022 68.5% Peak drought 

year 

2023 44.8% Above average 

drought 

2024 39.1% Moderate 

drought year 

2025 37.6% Moderate 

drought year 
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Figure 3. Temporal variation of drought categories in Tambakboyo District (2020-2025) 
 

The annual fluctuation in drought intensity corresponds with regional climate 
variations. The extreme drought in 2022 aligns with meteorological records indicating 

below-average rainfall and higher temperatures associated with weak La Niña conditions 
affecting East Java during that period. This finding is consistent with (Rahmi & Dimyati, 

2021), who noted that large-scale climate phenomena significantly influence drought 
patterns in Indonesian agricultural regions. [3] 

To validate the NDDI classification accuracy, satellite-derived drought maps were 

compared with secondary data from the Tuban District Agriculture Office, specifically 
crop failure (puso) reports for the study period (Table 4). The comparison revealed strong 

agreement between NDDI-based drought classification and documented agricultural 
losses. In 2022, the peak drought year identified by NDDI analysis, the Agriculture Office 

recorded 1,847 hectares of crop failure (puso) in Tambakboyo District, representing the 
highest agricultural loss during the study period. Similarly, villages identified as severe 
drought zones through NDDI analysis (Kenanti, Gadon, and Plajan) corresponded with 

the highest puso incident rates reported by farmers. 
 

Table 3. Comparison of NDDI classification with crop failure (puso) data 

Year 
NDDI Severe-Very Severe 

Area (%) 

Puso Area 

(Ha) 

Puso Incidents 

Reported 

Agreement 

Level 

2020 38.7% 892 156 Moderate-High 

2021 45.2% 1,124 203 High 

2022 68.5% 1,847 341 Very High 

2023 44.8% 1,098 197 High 

2024 39.1% 876 148 Moderate-High 

2025* 37.6% 823 139 Moderate-High 

*2025 data preliminary 

 
Pearson correlation analysis between NDDI-classified severe drought area and 

reported puso area yielded a strong positive correlation (r = 0.89, p < 0.01), confirming the 
reliability of satellite-based drought monitoring for agricultural impact assessment. This 
validation strengthens the applicability of NDDI for operational drought early warning 

systems in Tambakboyo and similar agricultural regions. Field interviews with extension 
officers further corroborated these findings, with officers noting that drought-related yield 

reductions were most pronounced in areas identified by NDDI as severe drought zones 
[15]. 
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4.2. Spatial Drought Distribution  
Spatial analysis identified distinct drought vulnerability patterns across Tambakboyo 

District (Figure 4). Three villages consistently exhibited higher drought intensity across all 

study years: Kenanti (average NDDI: 0.32), Gadon (average NDDI: 0.29), and Plajan 
(average NDDI: 0.28). These villages are characterized by predominantly rain-fed 

agriculture on slopes with shallow calcareous soils and limited water retention capacity.  
The spatial consistency of drought patterns across years suggests that vulnerability is 

structurally embedded in the landscape rather than randomly distributed. This aligns with 

(Alazba et al., 2025), who emphasized that topographic and soil characteristics are primary 
determinants of drought susceptibility in agricultural landscapes [12]. Villages with better 

irrigation infrastructure or proximity to water sources showed lower drought vulnerability, 
supporting the importance of water management infrastructure for drought resilience. 

 
Figure 4. Spatial distribution of drought intensity in Tambakboyo District. 

 
The drought vulnerability map generated from this study provides critical spatial 

information for strategic water infrastructure development planning in Tambakboyo 
District. Based on the consistent identification of Kenanti, Gadon, and Plajan as high-

priority drought-prone areas, the following infrastructure interventions are recommended: 
1. Small-scale irrigation dam (embung) construction: The three priority villages require 

at least 2-3 embung facilities with storage capacity of 5,000-10,000 m³ each, 
strategically positioned in upstream catchment areas to maximize water harvesting 
during the wet season. Site suitability analysis combining NDDI vulnerability maps 

with topographic data (slope, elevation) and soil permeability maps can identify 
optimal embung locations with minimal seepage loss and maximum service area 

coverage [16]. 
2. Borehole and shallow well development: For areas where embung construction is 

geologically unfeasible, community-managed boreholes (15-25 meters depth) should 
be prioritized. Hydrogeological assessment indicates that northern portions of 
Kenanti and Gadon have suitable aquifer conditions for groundwater extraction. A 

network of 8-12 strategically distributed boreholes could provide supplementary 
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irrigation for approximately 150-200 hectares of critical drought-prone agricultural 
land [17]. 

3. Spatial prioritization framework: The vulnerability map enables evidence-based 
resource allocation, ensuring that limited government budgets for drought mitigation 
infrastructure are directed toward locations with (a) highest drought frequency and 

severity, (b) largest agricultural area at risk, and (c) greatest potential socioeconomic 
impact. This spatial decision-support approach aligns with national water security 

programs and enhances cost-effectiveness of drought adaptation investments [18]. 
 

The integration of NDDI-derived vulnerability maps with participatory rural 
appraisal methods can further refine infrastructure planning by incorporating local 

knowledge on traditional water sources, land tenure patterns, and farmer water 

management preferences [19]. This multi-stakeholder approach ensures that technical 
drought monitoring translates into actionable, community-accepted adaptation solutions. 

4.3. Relationship Between Indices and Validation  
Strong correlations were observed between the spectral indices (Table 3). NDDI 

showed significant negative correlation with both NDVI (r = -0.83, p < 0.01) and NDWI 

(r = -0.91, p < 0.01), confirming that drought conditions coincide with reduced vegetation 
health and soil moisture. The stronger correlation between NDDI and NDWI suggests that 

water availability is a more direct determinant of drought stress than vegetation condition 
in this agricultural landscape, consistent with findings by (Xiao et al., 2023). [13] 

 

Table 4. Correlation matrix between spectral indices 
 

Index NDVI NDWI NDDI 

NDVI 1.00 0.78** -0.83** 

NDWI 0.78** 1.00 -0.91** 

NDDI -0.83** -0.91** 1.00 

 

4.4. Implications for Drought Management  
The identification of consistent drought patterns and vulnerable villages has direct 

implications for drought management in Tambakboyo District. The predictable seasonal 
pattern allows for anticipatory measures, with agricultural extension services able to advise 

farmers in vulnerable villages to implement water conservation measures by early 
September. Resources for drought mitigation can be prioritized for Kenanti, Gadon, and 

Plajan villages, where impacts are most severe and recurrent.  
The methodology demonstrated here can be operationalized by local agricultural 

offices for routine drought monitoring using freely available Sentinel-2 data. This supports 

the development of community-based drought early warning systems, which are crucial 
for climate adaptation in rain-fed agricultural regions [14]. Furthermore, the establishment 

of automated NDDI monitoring workflows integrated with mobile-based farmer alert 
systems could enable real-time drought information dissemination, enhancing agricultural 

decision-making at the farm level [20]. 
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CONCLUSION 
This study successfully applied the Normalized Difference Drought Index to analyze 

spatiotemporal patterns of agricultural drought in Tambakboyo District from 2020 to 2025. 

The main findings are:  
1. Tambakboyo District experiences recurrent seasonal drought with consistent annual 

patterns, typically intensifying from September and peaking in October-November.  
2. The year 2022 exhibited the most severe drought conditions, with 68.5% of the 

district area experiencing severe to very severe drought in October, corresponding 

with 1,847 hectares of documented crop failure (puso) reported by the Tuban 
Agriculture Office. 

3. Spatially, Kenanti, Gadon, and Plajan villages were identified as consistent drought 
vulnerability hotspots due to their biophysical characteristics and limited irrigation 

access. The drought vulnerability map provides evidence-based guidance for 
prioritizing small-scale irrigation infrastructure (embung and boreholes) in these 
critical areas. 

4. The NDDI method proved effective for agricultural drought monitoring in this rain-
fed farming region, with strong correlation between drought intensity and water 

availability.  
 

The research demonstrates the utility of multi-temporal remote sensing analysis for 
drought assessment and provides a scientific basis for targeted mitigation strategies. The 
validated NDDI approach offers a replicable, cost-effective framework for drought 

monitoring in data-scarce agricultural regions across Indonesia. 
 

Future projections and research directions include: 
1. Climate change scenario modeling: Integration of NDDI-based drought vulnerability 

assessment with downscaled climate projections (CMIP6 models) to evaluate future 
drought risk under RCP 4.5 and RCP 8.5 scenarios, enabling proactive long-term 
adaptation planning [21]. 

2. Machine learning enhancement: Application of machine learning algorithms 
(Random Forest, Support Vector Machine) to combine NDDI with terrain attributes, 

soil properties, and climate variables for improved drought prediction accuracy and 
lead-time extension [22]. 

3. Crop-specific drought impact modeling: Development of crop-specific drought 
vulnerability indices that integrate NDDI with phenological calendars, crop water 

requirements, and yield response functions to quantify drought impacts on major 
commodities (maize, rice, cassava) [23]. 

4. Socioeconomic vulnerability integration: Coupling biophysical drought indices with 

socioeconomic data (farm size, income diversity, access to credit) to develop 
composite drought vulnerability indices that capture both exposure and adaptive 

capacity dimensions [24]. 
5. Real-time operational system: Establishment of an automated, cloud-based NDDI 

monitoring platform with Google Earth Engine, enabling near-real-time drought 
mapping and mobile alert dissemination to farmers and extension officers [25]. 

6. Regional upscaling: Extension of the methodology to all drought-prone districts in 

Tuban Regency and broader northern coastal East Java, facilitating regional drought 
early warning networks and coordinated response planning.Future research should 
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integrate field validation and socioeconomic factors to enhance the practical utility 
of remote sensing-based drought monitoring for agricultural adaptation.  

 
 These future research pathways will enhance the transition from retrospective 
drought analysis to prospective, decision-oriented drought risk management, ultimately 

strengthening agricultural resilience and food security in climate-vulnerable regions. 
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