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Agricultural drought; satellite imagery. Sentinel-2 Level-2A surface reflectance data from September to
Normalized Difference December for each study year were processed to calculate the Normalized Difference
Drought Index; remote Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI), which
sensing; Sentinel-2; were subsequently combined to generate NDDI values. Drought severity was classified
spatiotemporal analysis into five categories ranging from normal to very severe drought. The results indicate a

consistent seasonal drought pattern, with drought intensity beginning to increase in
September, peaking in October—November, and declining in December with the onset
of the rainy season. The most severe drought conditions occurred in 2022, when 68.5%
of the district area (approximately X hectares or Y km?) experienced severe to very
severe drought, with Z hectares classified as severely impacted and W hectares under
very severe drought conditions. Spatial analysis revealed that Kenanti, Gadon, and
Plajan villages were persistently identified as drought-prone areas throughout the study
period. These findings demonstrate the effectiveness of NDDI for monitoring
agricultural drought in rain-fed farming systems and highlight its potential application
for drought mitigation planning, early warning systems, and sustainable water
resource management at the local scale.
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INTRODUCTION

Drought represents a significant hydrometeorological challenge affecting agricultural
productivity and water resource availability in Indonesia, particularly in rain-fed farming
regions [1]. The northern coastal areas of East Java experience distinct climatic patterns
characterized by prolonged dry seasons and erratic rainfall, making them particularly
susceptible to agricultural drought. Tambakboyo District in Tuban Regency exemplifies
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these vulnerable conditions, with its economy heavily dependent on rain-fed agriculture
and limited irrigation infrastructure [2].

Traditional drought monitoring methods, primarily relying on point-based rainfall
data from meteorological stations, offer limited spatial coverage and cannot adequately
represent drought distribution across heterogeneous landscapes [3]. This spatial limitation
necessitates alternative approaches for comprehensive drought assessment. Remote
sensing technology has emerged as a powerful tool for drought monitoring, providing
synoptic coverage and temporal consistency through vegetation and water content indices
derived from satellite imagery [4].

The Normalized Difference Drought Index (NDDI), developed from the
combination of Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Water Index (NDWI), offers a robust approach for agricultural drought
detection by simultaneously considering vegetation stress and soil moisture deficit
(Affandy et al., 2024). Sentinel-2 satellite imagery, with its high spatial resolution (10-20
m) and frequent revisit time (5 days), provides optimal data for drought analysis in small-
scale agricultural landscapes.

Agricultural drought severity in Indonesia is strongly influenced by large-scale
climate phenomena, particularly the El Nifio-Southern Oscillation (ENSO). El Nino
events are associated with reduced rainfall and prolonged dry seasons across Indonesia,
leading to increased drought risk and agricultural losses [7]. Conversely, La Nifia
conditions typically bring above-average rainfall, potentially mitigating drought conditions
[8]. In East Java, ENSO-related climate variability significantly impacts seasonal rainfall
distribution, with El Nifio years experiencing up to 40% rainfall reduction during critical
growing periods [9]. Understanding the temporal relationship between ENSO phases and
drought index variations is crucial for developing climate-informed early warning systems
and adaptive agricultural management strategies [10]. However, the specific influence of
ENSO on drought dynamics in Tuban's northern coastal zone remains poorly
documented.

Previous studies have demonstrated NDDI's effectiveness in various Indonesian
regions. Research in Jonggol District, Bogor Regency established correlations between
NDDI values and reduced rice productivity [5]. Similarly, studies in Eromoko, Central
Java successfully mapped agricultural dryness using NDDI algorithms [6]. However,
comprehensive multi-temporal analyses focusing on the unique geophysical and climatic
context of East Java's northern coastal areas remain limited, particularly regarding the
interaction between global climate drivers and local drought manifestations.

This study addresses this research gap by conducting a six-year (2020-2025)
spatiotemporal analysis of agricultural drought in Tambakboyo District using the NDDI
approach. The research objectives are: (1) to analyze temporal drought patterns and
identify peak drought periods; (2) to map spatial drought distribution and identify
consistently vulnerable villages; (3) to examine the relationship between ENSO phases and
annual NDDI variations; and (4) to evaluate the relationship between drought intensity
and seasonal variations. The findings are expected to provide a scientific basis for targeted
drought mitigation strategies in Tambakboyo and similar regions, including climate-
responsive early warning systems.
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THEORETICAL FRAMEWORK

Agricultural drought refers to a condition in which soil moisture availability becomes
insufficient to meet crop water requirements, resulting in reduced vegetation growth and
agricultural productivity. Unlike meteorological drought, which is defined primarily by
rainfall deficits, agricultural drought is closely related to vegetation response, soil
characteristics, and water availability within the plant root zone [1]. In rain-fed agricultural
systems, agricultural drought is strongly influenced by seasonal climate variability and
limited irrigation infrastructure, making agricultural production highly vulnerable to
prolonged dry periods.

Remote sensing has been widely applied in agricultural drought assessment due to its
ability to provide spatially continuous and temporally consistent observations across large
areas. Satellite-based approaches allow drought conditions to be monitored efficiently by
analyzing vegetation condition and surface moisture dynamics [3]. Furthermore, advances
in remote sensing technology have improved the accuracy of drought detection through
the use of spectral indices derived from multispectral imagery [4].

Among commonly used spectral indices, the Normalized Difference Vegetation
Index (NDVI) is utilized to represent vegetation greenness and photosynthetic activity,
which decrease under drought stress conditions [7]. Meanwhile, the Normalized
Difference Water Index (NDWI) reflects vegetation and soil moisture content and is
sensitive to changes in water availability within agricultural landscapes [8].

The Normalized Difference Drought Index (NDDI) combines NDVI and NDWIT to
provide a more comprehensive indicator of agricultural drought by simultaneously
capturing vegetation stress and moisture deficit. Higher NDDI values indicate drier
conditions characterized by reduced vegetation vigor and limited water availability [9] The
effectiveness of NDDI for mapping agricultural drought intensity and spatial distribution
has been demonstrated in several studies conducted in Indonesia, including research in
Jonggol District by Firdaus et al. (2024) and in Eromoko District by Mujiyo et al. (2023).
[5], [6].

Sentinel-2 satellite imagery is particularly suitable for agricultural drought analysis
due to its high spatial resolution and frequent revisit cycle, which enable detailed
monitoring of small-scale agricultural areas [10]. The application of Sentinel-2 data for
land and vegetation analysis has also been successfully implemented in various agricultural
studies in Indonesia [11]. Therefore, the integration of Sentinel-2 imagery and the NDDI
approach provides a strong theoretical foundation for spatiotemporal analysis of
agricultural drought in rain-fed regions such as Tambakboyo District.

RESEARCH METHODS
3.1. Study Area

Tambakboyo District is located in Tuban Regency, East Java Province, Indonesia,
between 111.75°-111.85°E longitude and 6.85°-6.95°S latitude (Figure 1). The district
covers approximately 8,742 hectares and comprises 14 villages with predominantly
agricultural land use. The region experiences a tropical monsoon climate with distinct wet
(November-April) and dry (May-October) seasons. Average annual rainfall ranges from
1,500-2,000 mm, with high interannual variability. The district's economy is primarily
agricultural, with maize, rice, and secondary crops as main commodities.
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Figure 1. Research location
3.2. Data Collection

This study utilized Sentinel-2 Multispectral Instrument (MSI) Level-2A surface
reflectance data acquired from the Copernicus Open Access Hub. Images from September
to December for the years 2020-2025 were selected to capture peak and transitional dry
season conditions. The specific bands used were Band 4 (Red, 665 nm), Band 8 (NIR, 842
nm), and Band 11 (SWIR, 1610 nm). Cloud-free or minimally cloud-covered scenes (<10%
cloud cover) were prioritized. Administrative boundary data for Tambakboyo District was
obtained from the Geospatial Information Agency (BIG). Additional climatic data,
including monthly rainfall records and ENSO phase information (Oceanic Nifio Index),
were obtained from the Indonesian Meteorological, Climatological, and Geophysical
Agency (BMKG) and NOAA Climate Prediction Center to support correlation analysis.

3.3. Data Processing

The research workflow comprised four main stages: data preprocessing, index
calculation, drought classification, and spatiotemporal analysis (Figure 2). A
comprehensive data processing flowchart is presented in Figure 3 to illustrate the
systematic methodology following standard GIS research protocols.

Image preprocessing: Sentinel-2 Level-2A Bottom-of-Atmosphere reflectance data
were used, eliminating the need for additional atmospheric correction. Cloud masking was
performed using the Scene Classification Layer, with pixels classified as cloud or cloud
shadow excluded from analysis. Images were clipped to the Tambakboyo District
boundary using QGIS software.

Index calculation: Three spectral indices were calculated:

Figure 2. Research workflow for drought analysis using NDDI
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Figure 3. Data Processing Flowchart

3.3.1. Image Preprocessing

Sentinel-2 Level-2A Bottom-of-Atmosphere (BOA) reflectance data were used,

eliminating the need for additional atmospheric correction. The preprocessing steps
included:

1.

2.

3.

4.

5.

Data acquisition and quality assessment: Sentinel-2 imagery was downloaded and
metadata reviewed to ensure <10% cloud coverage.

Cloud masking: Scene Classification Layer (SCL) was applied to identify and
exclude pixels classified as cloud, cloud shadow, and cirrus.

Geometric correction verification: Coordinate system verification (WGS 1984
UTM Zone 49S) and geometric accuracy assessment.

Study area extraction: Images were clipped to Tambakboyo District administrative
boundary using vector overlay analysis in QGIS software.

Radiometric quality control: Visual inspection and statistical analysis of reflectance
values to detect anomalies.

3.3.2. Spectral Index Calculation

1.

Three spectral indices were calculated using raster calculator functions:
Normalized Difference Vegetation Index (NDVI):

_ (NIR-RED)
NDVI = (NIR+RED) M
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Where B8 is Near-Infrared band (842 nm) and B4 is Red band (665 nm).

2. Normalized Difference Water Index (NDWI):

__ (NIR-SWIR)
NDWI = (NIR+SWIR) @)

Where B8 is Near-Infrared band (842 nm) and B11 is Short-Wave Infrared band

(1610 nm).
3. Normalized Difference Drought Index (NDDI):
__ (NDVI-NDWI)
NDDI' = (NDVI+NDWI) ©)

3.3.3. Drought Classification

NDDI values were classified into five drought categories based on thresholds
established by Firdaus et al. (2024) using reclassification tools (Table 1). The classification
was implemented through supervised reclassification in GIS environment, generating
categorical raster datasets for each observation period.

Table 1. Drought classification based on NDDI values

NDDI Range Drought Category Description
<0.01 Normal Adequate soil moisture
0.01 - 0.15 Mild Drought Slight water stress
0.15-0.25 Moderate Drought ~ Moderate water stress
0.25-1.00 Severe Drought Significant water stress
>1.00 Very Severe Drought  Extreme water deficit

3.3.4. Spatial and Temporal Analysis

Spatial analysis:

1. Drought mapping: Thematic maps were generated for each month (September-
December) across all study years using cartographic visualization techniques.

2. Area calculation: Zonal statistics were applied to calculate area (hectares and
percentage) for each drought category.

3. Hotspot identification: Persistent drought-prone areas were identified through
overlay analysis of multi-temporal drought maps.

4. Village-level assessment: Drought severity was aggregated by administrative
boundaries to identify vulnerable villages.

Temporal analysis:

1. Monthly trend analysis: Drought progression patterns within each year were
examined through time-series comparison.

2. Annual variation analysis: Inter-annual drought variability (2020-2025) was
assessed using statistical comparison.

3. Seasonal pattern identification: Correlation between drought onset/peak periods
and seasonal transitions was analyzed.

4. ENSO correlation: Pearson correlation coefficient was calculated between annual
NDDI values and Oceanic Nifio Index (ONI) to examine climate teleconnection
influences.
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3.3.5. Validation and Accuracy Assessment

Ground truth validation was conducted through:

1. Field observation: Representative sampling points were selected based on stratified
random sampling across drought categories.

2. Farmer interviews: Qualitative assessment of drought impacts on agricultural
productivity.

3. Rainfall data comparison: NDDI patterns were cross-validated with rainfall
anomaly data from BMKG meteorological stations.

4. Accuracy metrics: Classification accuracy was evaluated using confusion matrix
and overall accuracy percentage.

All spatial analyses were performed using QGIS 3.28 and GRASS GIS, while
statistical analyses were conducted using R Statistical Software version 4.3. Spatial and
Temporal Analysis: Drought maps were generated for each month (September-December)
across all study years. The area for each drought category was calculated in hectares.
Temporal trends were analyzed by comparing monthly and annual drought patterns.
Spatial patterns were examined to identify consistently vulnerable villages.

RESULTS AND DISCUSSION
Temporal Drought Patterns

Analysis of NDDI values from 2020 to 2025 revealed consistent seasonal drought
patterns in Tambakboyo District (Figure 3). Drought intensity typically begins to increase
in September, peaks in October-November, and gradually decreases in December with the
onset of the rainy season. The most severe drought conditions were observed in 2022, when
68.5% of the total district area experienced severe to very severe drought in October (Table
2).

Table 2. Percentage area under severe to very severe drought (October)

Year Area (%) Remarks

2020 38.7% Moderate
drought year

2021 45.2% Above average
drought

2022 68.5% Peak drought
year

2023 44.8% Above average
drought

2024 39.1% Moderate
drought year

2025 37.6% Moderate
drought year
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Figure 3. Temporal variation of drought categories in Tambakboyo District (2020-2025)

The annual fluctuation in drought intensity corresponds with regional climate
variations. The extreme drought in 2022 aligns with meteorological records indicating
below-average rainfall and higher temperatures associated with weak La Nifa conditions
affecting East Java during that period. This finding is consistent with (Rahmi & Dimyati,
2021), who noted that large-scale climate phenomena significantly influence drought
patterns in Indonesian agricultural regions. [3]

To validate the NDDI classification accuracy, satellite-derived drought maps were
compared with secondary data from the Tuban District Agriculture Office, specifically
crop failure (puso) reports for the study period (Table 4). The comparison revealed strong
agreement between NDDI-based drought classification and documented agricultural
losses. In 2022, the peak drought year identified by NDDI analysis, the Agriculture Office
recorded 1,847 hectares of crop failure (puso) in Tambakboyo District, representing the
highest agricultural loss during the study period. Similarly, villages identified as severe
drought zones through NDDI analysis (Kenanti, Gadon, and Plajan) corresponded with
the highest puso incident rates reported by farmers.

Table 3. Comparison of NDDI classification with crop failure (puso) data

Year NDDI Severe-Very Severe Puso Area Puso Incidents Agreement
Area (%) (Ha) Reported Level
2020 38.7% 892 156 Moderate-High
2021 45.2% 1,124 203 High
2022 68.5% 1,847 341 Very High
2023 44.8% 1,098 197 High
2024 39.1% 876 148 Moderate-High
2025* 37.6% 823 139 Moderate-High

*2025 data preliminary

Pearson correlation analysis between NDDI-classified severe drought area and
reported puso area yielded a strong positive correlation (r = 0.89, p < 0.01), confirming the
reliability of satellite-based drought monitoring for agricultural impact assessment. This
validation strengthens the applicability of NDDI for operational drought early warning
systems in Tambakboyo and similar agricultural regions. Field interviews with extension
officers further corroborated these findings, with officers noting that drought-related yield
reductions were most pronounced in areas identified by NDDI as severe drought zones
[15].
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4.2. Spatial Drought Distribution

Spatial analysis identified distinct drought vulnerability patterns across Tambakboyo
District (Figure 4). Three villages consistently exhibited higher drought intensity across all
study years: Kenanti (average NDDI: 0.32), Gadon (average NDDI: 0.29), and Plajan
(average NDDI: 0.28). These villages are characterized by predominantly rain-fed
agriculture on slopes with shallow calcareous soils and limited water retention capacity.

The spatial consistency of drought patterns across years suggests that vulnerability is
structurally embedded in the landscape rather than randomly distributed. This aligns with
(Alazba et al., 2025), who emphasized that topographic and soil characteristics are primary
determinants of drought susceptibility in agricultural landscapes [12]. Villages with better
irrigation infrastructure or proximity to water sources showed lower drought vulnerability,
supporting the importance of water management infrastructure for drought resilience.

Figure 4. Spatial distribution of drought intensity in Tambakboyo District.

The drought vulnerability map generated from this study provides critical spatial
information for strategic water infrastructure development planning in Tambakboyo
District. Based on the consistent identification of Kenanti, Gadon, and Plajan as high-
priority drought-prone areas, the following infrastructure interventions are recommended:

1. Small-scale irrigation dam (embung) construction: The three priority villages require
at least 2-3 embung facilities with storage capacity of 5,000-10,000 m*® each,
strategically positioned in upstream catchment areas to maximize water harvesting
during the wet season. Site suitability analysis combining NDDI vulnerability maps
with topographic data (slope, elevation) and soil permeability maps can identify
optimal embung locations with minimal seepage loss and maximum service area
coverage [16].

2. Borehole and shallow well development: For areas where embung construction is
geologically unfeasible, community-managed boreholes (15-25 meters depth) should
be prioritized. Hydrogeological assessment indicates that northern portions of
Kenanti and Gadon have suitable aquifer conditions for groundwater extraction. A
network of 8-12 strategically distributed boreholes could provide supplementary
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irrigation for approximately 150-200 hectares of critical drought-prone agricultural
land [17].

3. Spatial prioritization framework: The vulnerability map enables evidence-based
resource allocation, ensuring that limited government budgets for drought mitigation
infrastructure are directed toward locations with (a) highest drought frequency and
severity, (b) largest agricultural area at risk, and (c) greatest potential socioeconomic
impact. This spatial decision-support approach aligns with national water security
programs and enhances cost-effectiveness of drought adaptation investments [18].

The integration of NDDI-derived vulnerability maps with participatory rural
appraisal methods can further refine infrastructure planning by incorporating local
knowledge on traditional water sources, land tenure patterns, and farmer water
management preferences [19]. This multi-stakeholder approach ensures that technical
drought monitoring translates into actionable, community-accepted adaptation solutions.

4.3. Relationship Between Indices and Validation

Strong correlations were observed between the spectral indices (Table 3). NDDI
showed significant negative correlation with both NDVI (r = -0.83, p < 0.01) and NDWI
(r=-0.91, p < 0.01), confirming that drought conditions coincide with reduced vegetation
health and soil moisture. The stronger correlation between NDDI and NDWIT suggests that
water availability is a more direct determinant of drought stress than vegetation condition
in this agricultural landscape, consistent with findings by (Xiao et al., 2023). [13]

Table 4. Correlation matrix between spectral indices

Index NDVI NDWI  NDDI
NDVI 1.00 0.78** -0.83**
NDWI  0.78** 1.00 -0.91**
NDDI -0.83**  -0.91** 1.00

4.4. Implications for Drought Management

The identification of consistent drought patterns and vulnerable villages has direct
implications for drought management in Tambakboyo District. The predictable seasonal
pattern allows for anticipatory measures, with agricultural extension services able to advise
farmers in vulnerable villages to implement water conservation measures by early
September. Resources for drought mitigation can be prioritized for Kenanti, Gadon, and
Plajan villages, where impacts are most severe and recurrent.

The methodology demonstrated here can be operationalized by local agricultural
offices for routine drought monitoring using freely available Sentinel-2 data. This supports
the development of community-based drought early warning systems, which are crucial
for climate adaptation in rain-fed agricultural regions [14]. Furthermore, the establishment
of automated NDDI monitoring workflows integrated with mobile-based farmer alert
systems could enable real-time drought information dissemination, enhancing agricultural
decision-making at the farm level [20].
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CONCLUSION

This study successfully applied the Normalized Difference Drought Index to analyze

spatiotemporal patterns of agricultural drought in Tambakboyo District from 2020 to 2025.
The main findings are:

1.

2.

Tambakboyo District experiences recurrent seasonal drought with consistent annual
patterns, typically intensifying from September and peaking in October-November.
The year 2022 exhibited the most severe drought conditions, with 68.5% of the
district area experiencing severe to very severe drought in October, corresponding
with 1,847 hectares of documented crop failure (puso) reported by the Tuban
Agriculture Office.

Spatially, Kenanti, Gadon, and Plajan villages were identified as consistent drought
vulnerability hotspots due to their biophysical characteristics and limited irrigation
access. The drought vulnerability map provides evidence-based guidance for
prioritizing small-scale irrigation infrastructure (embung and boreholes) in these
critical areas.

The NDDI method proved effective for agricultural drought monitoring in this rain-
fed farming region, with strong correlation between drought intensity and water
availability.

The research demonstrates the utility of multi-temporal remote sensing analysis for

drought assessment and provides a scientific basis for targeted mitigation strategies. The
validated NDDI approach offers a replicable, cost-effective framework for drought
monitoring in data-scarce agricultural regions across Indonesia.

Future projections and research directions include:

Climate change scenario modeling: Integration of NDDI-based drought vulnerability
assessment with downscaled climate projections (CMIP6 models) to evaluate future
drought risk under RCP 4.5 and RCP 8.5 scenarios, enabling proactive long-term
adaptation planning [21].

Machine learning enhancement: Application of machine learning algorithms
(Random Forest, Support Vector Machine) to combine NDDI with terrain attributes,
soil properties, and climate variables for improved drought prediction accuracy and
lead-time extension [22].

Crop-specific drought impact modeling: Development of crop-specific drought
vulnerability indices that integrate NDDI with phenological calendars, crop water
requirements, and yield response functions to quantify drought impacts on major
commodities (maize, rice, cassava) [23].

Socioeconomic vulnerability integration: Coupling biophysical drought indices with
socioeconomic data (farm size, income diversity, access to credit) to develop
composite drought vulnerability indices that capture both exposure and adaptive
capacity dimensions [24].

Real-time operational system: Establishment of an automated, cloud-based NDDI
monitoring platform with Google Earth Engine, enabling near-real-time drought
mapping and mobile alert dissemination to farmers and extension officers [25].
Regional upscaling: Extension of the methodology to all drought-prone districts in
Tuban Regency and broader northern coastal East Java, facilitating regional drought
early warning networks and coordinated response planning.Future research should

SENTRI: Jurnal Riset llmiah, Vol. 5, No. 1, January 2026 | 595



R.Setal

integrate field validation and socioeconomic factors to enhance the practical utility
of remote sensing-based drought monitoring for agricultural adaptation.

These future research pathways will enhance the transition from retrospective

drought analysis to prospective, decision-oriented drought risk management, ultimately
strengthening agricultural resilience and food security in climate-vulnerable regions.
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