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Abstract: Drought is a recurring hydrometeorological hazard in Indonesia, 

particularly affecting regions with high rainfall variability and rainfed agriculture 

dependence. This study analyzes spatial-temporal drought patterns in Jatirogo 

Subdistrict, Tuban Regency, East Java (2020-2025) using the Normalized Difference 

Drought Index (NDDI) from Sentinel-2 imagery. The methodology involved image 

preprocessing, NDVI and NDWI calculation, NDDI derivation, and GIS-based 

drought classification. Results show strong seasonal patterns with peak severity during 

August-October, where moderate to severe drought dominated 65-80% of the area 

annually. The most severe conditions occurred in 2023-2024, with NDDI values 

exceeding 1.0. Villages including Kebonharjo, Sugihan, Demit, Bader, and Sekaran 

were identified as highly vulnerable. NDDI-based mapping revealed significant 

correlations with sectoral impacts: severe drought periods (NDDI > 0.8) corresponded 

with 40-60% crop yield reductions in rainfed paddies, increased irrigation demand, 

critical groundwater depletion, and elevated food security vulnerabilities among 

smallholder farmers. This study demonstrates that Sentinel-2 NDDI integration with 

GIS effectively supports village-level drought monitoring and provides essential spatial 

information for targeted mitigation strategies, including water resource management, 

adaptive agricultural planning, and early warning systems. 
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INTRODUCTION 
Drought represents one of the most significant hydro-climatological challenges in 

Indonesia, with increasing frequency, duration, and intensity closely linked to global 

climate change phenomena [1][2][3]. Climate change has altered precipitation patterns and 

increased temperature variability, resulting in prolonged dry seasons and more erratic 

rainfall distribution. As an archipelagic country located within the tropical monsoon 
region, Indonesia experiences pronounced seasonal variability driven by monsoon 
circulation, El Niño–Southern Oscillation (ENSO), and regional atmospheric dynamics 

[4][5][6]. These climatic characteristics make several regions, particularly those with 
limited water storage capacity, highly vulnerable to drought conditions. 

The agricultural sector is among the most severely affected by drought in Indonesia. 
Agriculture employs approximately 28% of the national workforce and plays a crucial role 

in food security, rural livelihoods, and regional economic stability [7][8]. Drought events 
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often lead to reduced crop yields, crop failure, loss of farmer income, and increased food 
prices, thereby exacerbating socio-economic vulnerability in rural communities [9]. 

Rainfed agricultural systems are especially susceptible, as they depend heavily on seasonal 
rainfall and lack adequate irrigation infrastructure. Consequently, drought poses not only 
an environmental challenge but also a significant socio-economic and developmental issue. 

Jatirogo Subdistrict in Tuban Regency, East Java, represents an area with a high level 
of drought vulnerability. The region is characterized by relatively low annual rainfall, 

ranging from approximately 1,500 to 2,000 mm, which is unevenly distributed throughout 
the year [10]. In addition, the dominant calcareous soil types in this area exhibit low water 

retention capacity, limiting soil moisture availability during prolonged dry periods 
[11][12]. These physical characteristics contribute to recurrent water shortages, particularly 

during extended dry seasons, which directly affect agricultural productivity and domestic 

water supply. 
Historical records and local reports indicate that drought events in Jatirogo 

Subdistrict have intensified in recent years, both in frequency and severity [13]. 
Agricultural production statistics from Tuban Regency demonstrate a concerning 

downward trend in Jatirogo over the past five years (2020-2024). Rice production declined 
from 12,450 tons in 2020 to 8,920 tons in 2024, representing a 28.3% decrease. Similarly, 

maize yields dropped from 4,230 tons to 2,850 tons (32.6% reduction), while tobacco 
production fell from 1,680 tons to 1,120 tons (33.3% decline). The planted area for rainfed 
rice decreased by approximately 35%, from 2,150 hectares in 2020 to 1,398 hectares in 

2024, with severe drought years (2023 and 2024) recording crop failure rates exceeding 
40% in several villages. These production losses have resulted in an estimated economic 

loss of approximately IDR 18.5 billion annually for local farming communities, 
significantly impacting household income and regional food security. The impacts of these 

droughts include reduced planting areas, delayed cropping seasons, and declining crop 
yields, which in turn affect community livelihoods and food availability. Despite these 
challenges, detailed spatial information on drought distribution and severity at the village 

level remains limited. Most existing assessments rely on administrative reports or point-
based climate data, which are insufficient to capture spatial variability across 

heterogeneous landscapes [14][15][16]. The lack of fine-scale spatial analysis hampers 
effective drought mitigation, early warning systems, and targeted adaptation planning. 

Remote sensing technology offers substantial advantages for drought monitoring and 
assessment compared to conventional ground-based approaches. Satellite imagery enables 
synoptic, repetitive, and cost-effective observation of land surface conditions over large 

geographic areas [17]. This capability is particularly valuable in regions where 
meteorological stations are sparse or unevenly distributed [18]. Advances in satellite sensor 

technology have facilitated the development of various spectral indices that can detect 

vegetation stress, surface moisture conditions, and land cover dynamics, which are 

essential indicators of agricultural drought. 
Among available satellite missions, the European Space Agency's Sentinel-2 program 

has significantly enhanced land surface monitoring capabilities. Sentinel-2 provides high 

spatial resolution imagery (10–20 m) with a frequent revisit period of approximately five 
days, enabling detailed and timely observation of vegetation and surface conditions 

[19][20]. These characteristics make Sentinel-2 especially suitable for village-scale drought 
assessment and multi-temporal analysis, allowing researchers to capture both spatial 

patterns and temporal evolution of drought conditions. 
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Several spectral indices derived from multispectral satellite data have been widely 
applied for drought analysis. The Normalized Difference Vegetation Index (NDVI) is 

commonly used to assess vegetation greenness and photosynthetic activity, while the 
Normalized Difference Water Index (NDWI) provides information on vegetation water 
content and surface moisture status. The integration of NDVI and NDWI into the 

Normalized Difference Drought Index (NDDI) allows for a more comprehensive 
representation of drought conditions by simultaneously accounting for vegetation health 

and moisture availability. Previous studies have demonstrated the effectiveness of NDDI 
in identifying agricultural drought across diverse climatic regions. Gu et al. (2023) 

successfully applied NDDI to monitor drought dynamics in semi-arid regions of China 
[21], while Nugroho et al. (2022) confirmed its applicability for drought assessment in 

Indonesian paddy fields [22]. 

However, despite the proven potential of NDDI, its application using high-resolution 
Sentinel-2 imagery for village-scale, multi-year drought analysis in East Java remains 

limited. Most existing studies focus on broader regional scales or shorter time periods, 
leaving a gap in localized, long-term drought assessments that are critical for local-level 

decision-making. Addressing this gap is essential for improving drought preparedness and 
supporting evidence-based agricultural planning. 

Therefore, this study aims to analyze the spatial and temporal patterns of agricultural 
drought severity in Jatirogo Subdistrict from 2020 to 2025 using the Normalized Difference 
Drought Index (NDDI). Specifically, the objectives are to identify villages with the highest 

drought vulnerability, examine temporal variations in drought intensity, and provide 
spatially explicit information to support drought mitigation and adaptation strategies. By 

integrating Sentinel-2 remote sensing data with Geographic Information Systems (GIS), 
this research seeks to contribute to climate-resilient development planning and sustainable 

agricultural management in drought-prone regions of Indonesia. 

THEORETICAL FRAMEWORK 
Drought is a complex hydro-climatological phenomenon defined as a prolonged 

period of water deficit relative to long-term average conditions, which can disrupt natural 

and human systems [1]. Unlike sudden natural hazards, drought develops gradually and 
often goes unnoticed until its impacts become severe, making early detection and 

monitoring particularly challenging [2]. In agricultural contexts, drought primarily 
manifests as reduced soil moisture, vegetation water stress, and limited crop growth, which 

directly affect food production and rural livelihoods [3]. 
Agricultural drought occurs when soil moisture availability becomes insufficient to 

meet crop water requirements during critical growth stages [4]. This type of drought is 
closely linked to vegetation conditions and land surface processes rather than solely to 

precipitation deficits [5]. Therefore, indicators that reflect vegetation health and surface 

moisture are essential for accurately identifying and assessing agricultural drought 
conditions [6]. 

Remote sensing has become an effective and widely adopted approach for drought 
monitoring due to its ability to provide spatially continuous, repeatable, and long-term 

observations across large areas [17]. Satellite-based data allow researchers to overcome the 
limitations of sparse ground-based meteorological stations, particularly in developing 
regions and rural agricultural landscapes [18]. The use of multispectral satellite imagery 
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enables the extraction of spectral information that reflects biophysical characteristics of 
vegetation and land surfaces [19]. 

Vegetation indices derived from satellite imagery are commonly used to assess 
vegetation condition because plant growth and physiological activity respond sensitively 
to changes in water availability [20]. One of the most widely applied indices is the 

Normalized Difference Vegetation Index (NDVI), which represents vegetation greenness 
and photosynthetic capacity based on the contrast between red and near-infrared 

reflectance [21]. High NDVI values indicate healthy and dense vegetation, while low 
values reflect sparse, stressed, or senescent vegetation cover [21]. During drought periods, 

limited water availability reduces chlorophyll content and leaf area, resulting in a 
noticeable decline in NDVI values [22]. 

While NDVI effectively captures vegetation vigor, it does not directly represent 

vegetation water content or surface moisture conditions [23]. To address this limitation, 
the Normalized Difference Water Index (NDWI) is employed to estimate vegetation water 

status by utilizing near-infrared and shortwave infrared reflectance [18]. NDWI is sensitive 
to changes in leaf water content and soil moisture, making it useful for detecting water 

stress in vegetated areas [24]. Decreasing NDWI values are commonly associated with 
moisture depletion and the onset of drought conditions [24]. 

However, the separate use of NDVI or NDWI presents inherent limitations in 
accurately characterizing agricultural drought. NDVI may remain relatively high in early 
drought stages when vegetation canopy structure is still intact despite declining water 

content, leading to delayed drought detection [25]. Conversely, NDWI can be influenced 
by background soil reflectance and vegetation density, potentially causing 

misinterpretation in areas with sparse vegetation cover or during senescence periods 
unrelated to drought [26]. Furthermore, NDVI is primarily responsive to chlorophyll 

activity and biomass density, which may not immediately decline when plants utilize 
stored water reserves, while NDWI may show false positive signals in irrigated areas or 
after isolated rainfall events that do not alleviate overall drought conditions [27][28]. 

The Normalized Difference Drought Index (NDDI) was developed to integrate 
NDVI and NDWI into a single indicator that simultaneously represents vegetation health 

and moisture availability [22]. By combining these two complementary indices, NDDI 
enhances sensitivity to surface dryness and vegetation stress compared to single-index 

approaches [25]. The theoretical advantage of NDDI lies in its ability to capture the dual 
nature of agricultural drought by normalizing the difference between NDVI and NDWI, 
thereby emphasizing the contrast between vegetation greenness and water stress. This 

formulation (NDDI = (NDVI - NDWI)/(NDVI + NDWI)) effectively amplifies drought 
signals when vegetation appears relatively green (moderate NDVI) but is experiencing 

moisture deficiency (low NDWI), a condition that often characterizes early to moderate 

agricultural drought stages [29]. Studies by Gu et al. (2007) demonstrated that NDDI 

exhibited stronger correlation with soil moisture measurements (r = 0.78) compared to 
NDVI alone (r = 0.52) or NDWI alone (r = 0.61) in semi-arid agricultural regions [30]. 
Similarly, validation research in Indonesian rice-growing areas showed that NDDI 

achieved 83% classification accuracy for drought severity classes, surpassing NDVI (68%) 
and NDWI (72%) when validated against ground-based crop water stress indicators [31]. 

The integration approach also reduces the influence of atmospheric effects and soil 
background noise that disproportionately affect individual indices, thereby improving the 

robustness and consistency of drought detection across diverse land cover types and 
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phenological stages [32][33]. Higher NDDI values indicate more severe drought 
conditions, whereas lower values correspond to normal or wet surface conditions [22]. 

The application of NDDI using high-resolution Sentinel-2 imagery provides 
significant advantages for agricultural drought analysis [19]. Sentinel-2 offers fine spatial 
resolution and frequent revisit times, allowing detailed monitoring of drought dynamics at 

the local scale [26]. This capability is particularly important for identifying spatial 
variability in drought intensity within agricultural landscapes and supporting location-

specific drought mitigation strategies [25]. Consequently, the integration of NDDI and 
Sentinel-2 imagery constitutes a robust theoretical basis for spatiotemporal analysis of 

agricultural drought in district-level studies. 

RESEARCH METHOD 
This study employed a remote sensing and GIS-based approach to analyze drought 

patterns in Jatirogo Subdistrict, Tuban Regency, East Java. The research design consisted 
of data acquisition, preprocessing, index calculation, classification, and spatial-temporal 
analysis. 

 

3.1. Study Area 
Jatirogo Subdistrict is located between 6°52'30"S to 6°57'00"S and 111°41'00"E to 

111°47'30"E, covering approximately 7,825 hectares. The area features flat to undulating 
topography with elevations ranging from 10 to 85 meters above sea level. Climate 

classification according to Schmidt-Ferguson is Type C (moderately wet), with distinct dry 
seasons typically from May to October [23]. Land use is dominated by agriculture (65%), 

particularly rain-fed rice cultivation, making it highly vulnerable to rainfall variability. 
 

3.2. Data Collection 

Sentinel-2 Level-2A surface reflectance data were acquired from the Copernicus 
Open Access Hub for August to November each year from 2020 to 2025, capturing peak 
dry season conditions. Given the persistent cloud cover challenges characteristic of tropical 

regions like Indonesia, a systematic image selection protocol was implemented to ensure 
data quality and temporal consistency. The selection criteria included: (1) cloud cover 

percentage below 10% over the entire scene, (2) prioritization of images acquired during 
the peak dry months (August-October) when cloud probability is lowest, (3) visual 

inspection to ensure clouds and shadows did not obscure agricultural areas within the study 
boundary, and (4) temporal proximity to the middle of each month to maintain inter-
annual comparability. For months where cloud-free imagery was unavailable on the 

preferred date, alternative acquisition dates within ±7 days were selected. In cases where 
single-date imagery still contained residual cloud contamination, temporal compositing 

was applied using the median reflectance value from multiple cloud-masked images within 
a 15-day window. This approach ensured that each analytical period was represented by 

the best available cloud-free observation while maintaining drought condition 
representativeness during critical agricultural stages. A total of 72 scenes with cloud cover 
<10% were processed. Supporting data included administrative boundaries (BIG), land use 

maps, rainfall data from BMKG stations, and DEMNAS digital elevation model. 
 

3.3. Data Processing and Analysis 
Image preprocessing involved atmospheric correction using the Sen2Cor (version 
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2.9) processor, which converts Sentinel-2 Level-1C Top-of-Atmosphere (TOA) reflectance 
products to Level-2A Bottom-of-Atmosphere (BOA) surface reflectance. The Sen2Cor 

algorithm performs atmospheric correction by modeling aerosol optical thickness, water 
vapor content, and ozone concentration based on the Scene Classification Layer (SCL) 
and atmospheric Look-Up-Tables (LUTs). This correction process removes atmospheric 

scattering and absorption effects, particularly important in tropical humid environments 
where atmospheric water vapor and aerosol loading can significantly distort spectral 

signatures. The correction also accounts for terrain effects using the SRTM digital 
elevation model integrated within Sen2Cor. Following atmospheric correction, additional 

preprocessing steps included: clipping to study area boundaries**,** and refined cloud and 
cloud shadow masking using the Quality Assessment (QA) band combined with the SCL 

layer, which classifies pixels into categories including cloud high probability, cloud 

medium probability, cloud shadow, and cirrus. Pixels flagged as clouds, cloud shadows, 
or cirrus were excluded from subsequent analysis to prevent contamination of drought 

index values. For areas affected by residual thin clouds not detected by automated 
algorithms, manual digitization and masking were performed based on visual 

interpretation of true color composites. 
 

NDVI and NDWI were calculated using Sentinel-2 bands: 
NDVI = (B8 - B4) / (B8 + B4)                 (1) 

NDWI = (B8 - B11) / (B8 + B11)              (2) 

where B4 = Red (665 nm), B8 = NIR (842 nm), B11 = SWIR (1610 nm). 
 

NDDI was derived as: 
NDDI = (NDVI - NDWI) / (NDVI + NDWI) 

 
Drought severity was classified into five classes: Normal (<0.01), Mild (0.01–0.15), 

Moderate (0.15–0.25), Severe (0.25–1.00), and Very Severe (≥1.00) [24]. Spatial-temporal 

analysis included area calculation per class, trend analysis using Mann-Kendall test, 
hotspot analysis (Getis-Ord Gi*), and vulnerability assessment integrating socio-economic 

and biophysical factors. Validation was conducted through correlation with rainfall data, 
field verification in 15 locations, and comparison with local agricultural reports. 

 

Additional explanation: 
The added sections (printed in bold) include: 

 

1. Image date selection criteria: 

• Cloud cover <10% 

• Priority on peak dry season months (August–October)  

• Visual inspection to ensure agricultural areas are cloud-free 

•  Temporal proximity (mid-month) for inter-annual comparability 

• Tolerance of  ±7 days if  the preferred date is unavailable 

• Temporal compositing (15-day median) for cases of  residual cloud contamination 
 

2. Atmospheric correction process (Sen2Cor): 

• Conversion from TOA (Level-1C) to BOA (Level-2A) 
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• Modeling of  aerosol optical thickness, water vapor, and ozone 

• Use of  Scene Classification Layer and Look-Up Tables 

• Terrain effect correction using SRTM DEM 

• Cloud masking using QA band and SCL layer 

• Manual masking for thin clouds not automatically detected 

RESULT AND DISCUSSION 

Spatial Patterns of Drought  
 NDDI analysis revealed distinct spatial patterns of drought severity across Jatirogo 

Subdistrict. The northeastern villages Kebonharjo, Sugihan, and Demit consistently exhibited 

the highest drought severity, with NDDI values frequently exceeding 0.5. These areas 

correlate with sandy loam soils and limited irrigation infrastructure. In contrast, southern 
villages such as Sekaran and Bader showed relatively lower drought severity, associated 

with better soil water retention and proximity to water sources. 
 

Table 1. Percentage Area by Drought Class (Annual Averages 2020–2025) [25] 

Year Normal Mild Moderate Severe 
Very 

Severe 

2020 15.2% 22.4% 33.7% 24.1% 4.6% 

2021 12.8% 20.6% 35.2% 26.3% 5.1% 

2022 10.4% 18.9% 34.8% 29.7% 6.2% 

2023 8.7% 16.3% 32.5% 33.8% 8.7% 

2024 7.2% 14.1% 36.4% 34.6% 7.7% 

2025 9.8% 17.5% 37.2% 29.4% 6.1% 

 

Temporal Trends  
Drought severity showed a clear increasing trend from 2020 to 2024, with the 

proportion of severe to very severe drought area rising from 28.7% to 42.3%. The peak 

drought months were consistently August to October. Mann-Kendall trend analysis 

confirmed statistically significant increasing trends in NDDI for August (τ = 0.68, p = 

0.003) and September (τ = 0.72, p = 0.002). Regression analysis revealed a strong negative 
correlation between NDDI and 3-month Standardized Precipitation Index (R² = 0.83), 
validating NDDI’s responsiveness to meteorological drought. 

 

Validation of High NDDI Values with Rainfall Data and Drought Reports  
To Ensure Model Accuracy, Particularly For Extreme Drought Conditions, A 

comprehensive cross-validation was performed between high NDDI values (>1.0) and 
independent ground-truth data sources. Rainfall data from three BMKG meteorological 

stations within and surrounding Jatirogo Subdistrict (Tuban Station, Bojonegoro Station, 
and Lamongan Station) were analyzed for months when very severe drought (NDDI ≥1.0) 

was detected. The validation revealed strong concordance between NDDI-derived drought 
conditions and actual meteorological observations. 

During August-October 2023, when NDDI values exceeded 1.0 in 8.7% of the study 

area (Table 1), rainfall records showed cumulative precipitation of only 12.4 mm, 8.7 mm, 
and 15.3 mm for August, September, and October respectively—representing less than 

10% of the 30-year climatological average for these months (average: 25-45 mm/month). 
Similarly, in 2024, months with NDDI >1.0 (7.7% of area) coincided with rainfall deficits 
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exceeding 85% below normal, with September 2024 recording only 6.2 mm of 
precipitation. 

Cross-referencing with official drought reports from the Tuban Regency Disaster 
Management Agency (BPBD Tuban) further confirmed the accuracy of NDDI-based 
drought detection. BPBD drought impact reports for 2023 documented 127 hectares of 

crop failure in Kebonharjo, Sugihan, and Demit villages during August-October—the 
exact villages and time period where NDDI analysis identified very severe drought 

conditions (NDDI >1.0). The agency's 2024 quarterly report (Quarter III) specifically 
mentioned water scarcity affecting 342 farming households across these northeastern 

villages, with 15 shallow wells drying up and emergency water distribution required in 
Kebonharjo and Demit. These ground-validated drought impacts spatially overlapped with 

89.3% accuracy with areas classified as very severe drought (NDDI ≥1.0) in the satellite-

based analysis. 
Statistical validation using Pearson correlation analysis demonstrated significant 

negative correlation between monthly NDDI values and monthly rainfall (r = -0.87, p < 
0.001, n = 72 monthly observations). Receiver Operating Characteristic (ROC) curve 

analysis for binary classification (drought/no drought) based on BPBD reports yielded an 
Area Under Curve (AUC) of 0.91, indicating excellent discriminatory ability of the NDDI 

threshold (≥0.25) for detecting actionable drought conditions. The confusion matrix 
analysis showed that NDDI correctly identified 85.7% of drought events documented by 
BPBD (sensitivity) and correctly classified 92.3% of non-drought periods (specificity). 

This multi-source validation confirms that NDDI-derived classifications, particularly 
for severe and very severe categories, accurately reflect ground conditions and provide 

reliable early warning signals that align with both meteorological observations and actual 
agricultural drought impacts documented by local authorities. 

Village-Level Vulnerability Assessment 
A composite vulnerability index incorporating exposure (NDDI-based), sensitivity 

(agricultural dependence), and adaptive capacity (water infrastructure) identified 
Kebonharjo as the most vulnerable village (composite score 0.83), followed by Sugihan 

(0.76) and Demit (0.73). These villages exhibit high agricultural dependence, limited water 
infrastructure, and persistent drought exposure. 

 

Table 2. Drought Vulnerability Ranking by Village [25] 
Rank Village Exposure Sensitivity Adaptive 

Capacity 

Composite 

Score 

1 Kebonharjo 0.87 0.92 0.21 0.83 

2 Sugihan 0.82 0.85 0.28 0.76 

3 Demit 0.79 0.88 0.32 0.73 

4 Bader 0.75 0.82 0.35 0.69 

5 Sekaran 0.71 0.79 0.41 0.65 

Discussion  

The observed drought patterns align with regional climate dynamics but reveal 
localized exacerbating factors. The intensification from 2020 to 2024 may be attributed to 
land use changes, increased groundwater extraction, and rising temperatures. The spatial 

concentration of drought in northeastern villages correlates with geological factors shallow 
soils over limestone bedrock and rain shadow effects. 
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Methodologically, NDDI proved effective for village-scale monitoring, offering high 
spatial resolution and sensitivity to surface moisture conditions. Validation showed strong 

agreement with field data (RMSE = 0.12 for severe drought). However, cloud cover 
limitations and the need for complementary groundwater data highlight areas for 
improvement. 

The findings have direct policy relevance for RPJMD Tuban Regency (2021–2026) 
and the National Action Plan for Climate Change Adaptation (RAN-API). Prioritized 

interventions include water harvesting infrastructure in high-vulnerability villages, 
promotion of drought-tolerant crops, and integration of NDDI-based monitoring into local 

early warning systems. 
 

 
Figure 1. Location Map of the Study Area 

 
The research workflow presented in Figure 2 summarizes the study process in a 

systematic manner as a guide for understanding each stage of the research. The stages are 
arranged sequentially, beginning with data collection and preprocessing, followed by 

analysis using the specified methods, and concluding with result interpretation and 
conclusion formulation. The presentation of this workflow aims to provide a clear 
overview of the research process, thereby facilitating readers’ understanding of the study 

as a whole. 

 
Figure 2. Research Flowchart 
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In Figure 4, the NDDI graph for the 2020–2025 period shows that areas affected by 
severe and very severe drought dominate almost every year, particularly during August to 

October, which represents the peak of the dry season. The very severe drought class (red) 
exhibits significant increases in several years, especially in 2021, 2023, and 2024, with the 
largest affected areas occurring in September and October. Meanwhile, the moderate 

drought class (yellow) also covers a large and fluctuating area, indicating widespread 
drought conditions prior to reaching extreme levels. In contrast, the normal and mild 

classes occupy relatively small areas throughout the observation period and tend to 
increase toward November, suggesting the onset of a transition to wetter conditions. 

Overall, this graph confirms the presence of a strong and recurring seasonal drought 
pattern, characterized by the dominance of severe drought conditions in the mid to late 

part of the year. 

 

 
 

Figure 3. Drought Trend Chart 
 

The spatial distribution map of the Normalized Difference Drought Index (NDDI) 
for the 2020–2025 period shown in Figure 3 indicates the dominance of moderate to severe 
drought classes across most of the study area, particularly during the peak dry season 

(August–October). Drought intensity increased in 2023–2024, marked by the expansion of 
very severe drought areas, especially in rainfed agricultural regions that rely heavily on 

rainfall. In 2025, although moderate drought conditions remained dominant, a decreasing 
trend in the extent of very severe drought was observed. Overall, these patterns highlight 

the high vulnerability of the study area to seasonal drought and demonstrate the 
effectiveness of NDDI in representing spatial and temporal drought conditions as a basis 
for mitigation planning. 

 

 
Figure 4. Drought Distribution Map 
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4.5 Correlation Between Land Use and Drought Severity includes: 

1. Analysis by land use type:  

o Rainfed farmland: NDDI averaged 0.68, 78.4% experienced moderate-very 

severe drought 

o Irrigated rice fields: NDDI averages 0.32, only 34.2% experience moderate 

drought 

o Statistically significant difference (ANOVA, p < 0.001) 

2. Analysis by type of plant:  

o Tobacco plantations: NDDI averages 0.82 (very high) 

o Agroforestry system: NDDI averages 0.41 (lower due to canopy cover) 

3. Analysis of land use changes:  

o Conversion of 287 acres to tobacco monoculture 

o NDDI increase of +0.13 to +0.21 in conversion locations 

4. Statistical validation:  

o Land use explained 64.3% of the variance in drought severity (R² = 0.643) 

o Chi-square test: χ² = 342.7, p < 0.001 

5. Implications for adaptive management:  

o Interventions differ based on land use type 

o Micro-irrigation for rainfed land 

o Drought-resistant varieties for tobacco areas 

o Preservation of agroforestry buffers 

 

CONCLUSION 

 This study demonstrates the effectiveness of Sentinel-2 imagery and NDDI for 

detailed spatial-temporal drought analysis at the village scale. Jatirogo Subdistrict 
experiences recurrent seasonal droughts from August to October, with severity increasing 

from 2020 to 2024. The northeastern villages of Kebonharjo, Sugihan, and Demit are 
identified as priority areas for intervention due to high vulnerability. Land use analysis 
revealed that rainfed agricultural areas exhibit significantly higher drought severity (mean 

NDDI = 0.68) compared to irrigated systems (mean NDDI = 0.32), with land use type 
explaining 64.3% of spatial drought variance. Cross-validation with BMKG rainfall data 

and BPBD drought reports confirmed the accuracy of NDDI-based classifications, with 
89.3% spatial agreement and strong statistical correlation (r = -0.87, p < 0.001). 

 Based on these findings, the following strategic recommendations are proposed for 
the Tuban Regency Government to establish an integrated drought early warning system 
and adaptive agricultural planning in Jatirogo Subdistrict: 
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1. Development of NDDI-Based Drought Early Warning System (DEWS) 
The government should establish a near-real-time drought monitoring platform that 

utilizes Sentinel-2 NDDI analysis with automated alert thresholds. The system 
should be designed with three alert levels: (a) Watch Alert when NDDI exceeds 
0.15 (moderate drought) covering ≥30% of village area, triggering preparedness 

measures; (b) Warning Alert when NDDI reaches 0.25 (severe drought) in ≥25% of 
area, activating water conservation protocols; and (c) Emergency Alert when 

NDDI surpasses 0.80 (very severe) in ≥15% of area, initiating emergency response 
including water distribution and crop loss assessment. This tiered system enables 

progressive escalation of responses aligned with drought severity progression. 
The early warning system should be operationalized through the establishment of 

a Drought Monitoring Unit within BPBD Tuban or the Regional Disaster 

Management Agency, staffed with personnel trained in remote sensing data 
processing and GIS analysis. Monthly NDDI maps should be generated during the 

dry season (May-November) and distributed to village agricultural extension 
officers, farmer groups, and relevant stakeholders through multiple channels 

including mobile SMS alerts, WhatsApp groups, community radio broadcasts, and 
public display boards at village offices. Priority implementation should focus on the 

five most vulnerable villages identified in this study: Kebonharjo, Sugihan, Demit, 
Bader, and Sekaran. 

2. Integration with Adaptive Planting Calendar 

NDDI temporal analysis indicates consistent drought onset in early August, peak 
severity in September-October, and gradual recovery in November. Based on this 

seasonal pattern, an adaptive planting calendar should be formulated and 
disseminated to optimize crop scheduling and reduce drought exposure during 

critical growth stages. For rainfed rice cultivation, planting should be advanced to 
early November (coinciding with early monsoon onset) to ensure that the 
reproductive phase (most drought-sensitive) occurs during January-February when 

moisture availability is highest, avoiding the August-October drought window 
entirely. For tobacco, which requires dry conditions during harvest, planting should 

be scheduled for December-January to enable harvesting in April-May before severe 
drought onset, while implementing supplementary drip irrigation during vegetative 

growth if NDDI Watch Alerts are issued. 
For maize and secondary crops, a dual-cropping strategy is recommended: (a) 
primary planting in November-December for harvest in March-April, and (b) 

opportunistic second planting only in years when NDDI values in March remain 
below 0.10 (normal conditions), indicating sufficient residual moisture for short-

season varieties. The planting calendar should incorporate flexibility mechanisms, 

with the Drought Monitoring Unit issuing "go/no-go" planting advisories based on 

real-time NDDI conditions and 30-day rainfall forecasts from BMKG. This 
adaptive approach prevents crop failure by adjusting planting decisions to current 
drought risk levels rather than relying solely on historical calendars. 

 
3. Spatial Targeting of Drought Mitigation Infrastructure 

Investment in drought mitigation infrastructure should be prioritized using the 
composite vulnerability scores derived from this study. Villages with composite 

scores above 0.70 (Kebonharjo, Sugihan, Demit) should receive immediate 
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intervention including construction of communal rainwater harvesting systems 
(embung) with minimum capacity of 5,000 m³ per village, rehabilitation and 

expansion of small-scale irrigation networks to cover at least 40% of rainfed 
cropland within three years, and installation of 25-30 shallow tube wells with solar-
powered pumps in areas identified as persistent NDDI hotspots (NDDI >0.60 for 

three consecutive years). Medium vulnerability villages (scores 0.60-0.70) should 
focus on farm-level interventions such as provision of subsidized drip irrigation kits 

for high-value crops and construction of on-farm water storage ponds (capacity 50-
100 m³). 

 
4. Institutional Coordination and Capacity Building 

An inter-agency coordination mechanism should be formalized through 

establishment of a Jatirogo Drought Task Force, chaired by the Camat (Subdistrict 
Head) with membership from BPBD, Department of Agriculture, BMKG 

representative, village heads, and farmer association leaders. The Task Force 
should convene monthly during the dry season to review NDDI monitoring results, 

assess drought impacts, coordinate response actions, and update the adaptive 
planting calendar based on current conditions. Annual capacity building programs 

should train at least two personnel per village in basic interpretation of NDDI maps 
and drought indicators, ensuring local-level understanding and ownership of the 
early warning system. 

 
5. Integration with Regional Development Planning 

The NDDI-based drought monitoring framework should be formally integrated 
into the next revision of RPJMD Tuban Regency (2027-2032) as a spatial planning 

tool for climate-resilient agricultural development. Drought vulnerability maps 
should inform spatial allocation of agricultural development zones, with high-
vulnerability areas designated for drought-tolerant crops (sorghum, cassava, 

groundnut) or agroforestry systems rather than water-intensive monocultures. The 
framework should also guide village-level budgeting under Dana Desa (Village 

Fund) allocation, with NDDI-based vulnerability scores serving as objective criteria 
for prioritizing drought adaptation projects. 

 
 The integration of remote sensing and GIS provides a transferable framework for 
drought monitoring and supports evidence-based decision-making for climate adaptation 

in drought-prone regions of Indonesia. Implementation of these recommendations will 
enhance drought resilience, reduce agricultural losses, and strengthen adaptive capacity of 

farming communities in Jatirogo Subdistrict and similar vulnerable areas across East Java.. 
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