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with 40-60% crop yield reductions in rainfed paddies, increased irrigation demand,
critical groundwater depletion, and elevated food security vulnerabilities among
smallholder farmers. This study demonstrates that Sentinel-2 NDDI integration with
GIS effectively supports village-level drought monitoring and provides essential spatial
information for targeted mitigation strategies, including water resource management,
adaptive agricultural planning, and early warning systems.
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INTRODUCTION

Drought represents one of the most significant hydro-climatological challenges in
Indonesia, with increasing frequency, duration, and intensity closely linked to global
climate change phenomena [1][2][3]. Climate change has altered precipitation patterns and
increased temperature variability, resulting in prolonged dry seasons and more erratic
rainfall distribution. As an archipelagic country located within the tropical monsoon
region, Indonesia experiences pronounced seasonal variability driven by monsoon
circulation, El Nino—Southern Oscillation (ENSO), and regional atmospheric dynamics
[4][5][6]. These climatic characteristics make several regions, particularly those with
limited water storage capacity, highly vulnerable to drought conditions.

The agricultural sector is among the most severely affected by drought in Indonesia.
Agriculture employs approximately 28% of the national workforce and plays a crucial role
in food security, rural livelihoods, and regional economic stability [7][8]. Drought events
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often lead to reduced crop yields, crop failure, loss of farmer income, and increased food
prices, thereby exacerbating socio-economic vulnerability in rural communities [9].
Rainfed agricultural systems are especially susceptible, as they depend heavily on seasonal
rainfall and lack adequate irrigation infrastructure. Consequently, drought poses not only
an environmental challenge but also a significant socio-economic and developmental issue.

Jatirogo Subdistrict in Tuban Regency, East Java, represents an area with a high level
of drought vulnerability. The region is characterized by relatively low annual rainfall,
ranging from approximately 1,500 to 2,000 mm, which is unevenly distributed throughout
the year [10]. In addition, the dominant calcareous soil types in this area exhibit low water
retention capacity, limiting soil moisture availability during prolonged dry periods
[11][12]. These physical characteristics contribute to recurrent water shortages, particularly
during extended dry seasons, which directly affect agricultural productivity and domestic
water supply.

Historical records and local reports indicate that drought events in Jatirogo
Subdistrict have intensified in recent years, both in frequency and severity [13].
Agricultural production statistics from Tuban Regency demonstrate a concerning
downward trend in Jatirogo over the past five years (2020-2024). Rice production declined
from 12,450 tons in 2020 to 8,920 tons in 2024, representing a 28.3% decrease. Similarly,
maize yields dropped from 4,230 tons to 2,850 tons (32.6% reduction), while tobacco
production fell from 1,680 tons to 1,120 tons (33.3% decline). The planted area for rainfed
rice decreased by approximately 35%, from 2,150 hectares in 2020 to 1,398 hectares in
2024, with severe drought years (2023 and 2024) recording crop failure rates exceeding
40% in several villages. These production losses have resulted in an estimated economic
loss of approximately IDR 18.5 billion annually for local farming communities,
significantly impacting household income and regional food security. The impacts of these
droughts include reduced planting areas, delayed cropping seasons, and declining crop
yields, which in turn affect community livelihoods and food availability. Despite these
challenges, detailed spatial information on drought distribution and severity at the village
level remains limited. Most existing assessments rely on administrative reports or point-
based climate data, which are insufficient to capture spatial variability across
heterogeneous landscapes [14][15][16]. The lack of fine-scale spatial analysis hampers
effective drought mitigation, early warning systems, and targeted adaptation planning.

Remote sensing technology offers substantial advantages for drought monitoring and
assessment compared to conventional ground-based approaches. Satellite imagery enables
synoptic, repetitive, and cost-effective observation of land surface conditions over large
geographic areas [17]. This capability i1s particularly valuable in regions where
meteorological stations are sparse or unevenly distributed [18]. Advances in satellite sensor
technology have facilitated the development of various spectral indices that can detect
vegetation stress, surface moisture conditions, and land cover dynamics, which are
essential indicators of agricultural drought.

Among available satellite missions, the European Space Agency's Sentinel-2 program
has significantly enhanced land surface monitoring capabilities. Sentinel-2 provides high
spatial resolution imagery (10-20 m) with a frequent revisit period of approximately five
days, enabling detailed and timely observation of vegetation and surface conditions
[19][20]. These characteristics make Sentinel-2 especially suitable for village-scale drought
assessment and multi-temporal analysis, allowing researchers to capture both spatial
patterns and temporal evolution of drought conditions.
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Several spectral indices derived from multispectral satellite data have been widely
applied for drought analysis. The Normalized Difference Vegetation Index (NDVI) is
commonly used to assess vegetation greenness and photosynthetic activity, while the
Normalized Difference Water Index (NDWI) provides information on vegetation water
content and surface moisture status. The integration of NDVI and NDWTI into the
Normalized Difference Drought Index (NDDI) allows for a more comprehensive
representation of drought conditions by simultaneously accounting for vegetation health
and moisture availability. Previous studies have demonstrated the effectiveness of NDDI
in identifying agricultural drought across diverse climatic regions. Gu et al. (2023)
successfully applied NDDI to monitor drought dynamics in semi-arid regions of China
[21], while Nugroho et al. (2022) confirmed its applicability for drought assessment in
Indonesian paddy fields [22].

However, despite the proven potential of NDDI, its application using high-resolution
Sentinel-2 imagery for village-scale, multi-year drought analysis in East Java remains
limited. Most existing studies focus on broader regional scales or shorter time periods,
leaving a gap in localized, long-term drought assessments that are critical for local-level
decision-making. Addressing this gap is essential for improving drought preparedness and
supporting evidence-based agricultural planning.

Therefore, this study aims to analyze the spatial and temporal patterns of agricultural
drought severity in Jatirogo Subdistrict from 2020 to 2025 using the Normalized Difference
Drought Index (NDDI). Specifically, the objectives are to identify villages with the highest
drought vulnerability, examine temporal variations in drought intensity, and provide
spatially explicit information to support drought mitigation and adaptation strategies. By
integrating Sentinel-2 remote sensing data with Geographic Information Systems (GIS),
this research seeks to contribute to climate-resilient development planning and sustainable
agricultural management in drought-prone regions of Indonesia.

THEORETICAL FRAMEWORK

Drought is a complex hydro-climatological phenomenon defined as a prolonged
period of water deficit relative to long-term average conditions, which can disrupt natural
and human systems [1]. Unlike sudden natural hazards, drought develops gradually and
often goes unnoticed until its impacts become severe, making early detection and
monitoring particularly challenging [2]. In agricultural contexts, drought primarily
manifests as reduced soil moisture, vegetation water stress, and limited crop growth, which
directly affect food production and rural livelihoods [3].

Agricultural drought occurs when soil moisture availability becomes insufficient to
meet crop water requirements during critical growth stages [4]. This type of drought is
closely linked to vegetation conditions and land surface processes rather than solely to
precipitation deficits [5]. Therefore, indicators that reflect vegetation health and surface
moisture are essential for accurately identifying and assessing agricultural drought
conditions [6].

Remote sensing has become an effective and widely adopted approach for drought
monitoring due to its ability to provide spatially continuous, repeatable, and long-term
observations across large areas [17]. Satellite-based data allow researchers to overcome the
limitations of sparse ground-based meteorological stations, particularly in developing
regions and rural agricultural landscapes [18]. The use of multispectral satellite imagery
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enables the extraction of spectral information that reflects biophysical characteristics of
vegetation and land surfaces [19].

Vegetation indices derived from satellite imagery are commonly used to assess
vegetation condition because plant growth and physiological activity respond sensitively
to changes in water availability [20]. One of the most widely applied indices is the
Normalized Difference Vegetation Index (NDVI), which represents vegetation greenness
and photosynthetic capacity based on the contrast between red and near-infrared
reflectance [21]. High NDVI values indicate healthy and dense vegetation, while low
values reflect sparse, stressed, or senescent vegetation cover [21]. During drought periods,
limited water availability reduces chlorophyll content and leaf area, resulting in a
noticeable decline in NDVI values [22].

While NDVI effectively captures vegetation vigor, it does not directly represent
vegetation water content or surface moisture conditions [23]. To address this limitation,
the Normalized Difference Water Index (NDWTI) is employed to estimate vegetation water
status by utilizing near-infrared and shortwave infrared reflectance [18]. NDWTI is sensitive
to changes in leaf water content and soil moisture, making it useful for detecting water
stress in vegetated areas [24]. Decreasing NDWI values are commonly associated with
moisture depletion and the onset of drought conditions [24].

However, the separate use of NDVI or NDWI presents inherent limitations in
accurately characterizing agricultural drought. NDVI may remain relatively high in early
drought stages when vegetation canopy structure is still intact despite declining water
content, leading to delayed drought detection [25]. Conversely, NDWI can be influenced
by background soil reflectance and vegetation density, potentially causing
misinterpretation in areas with sparse vegetation cover or during senescence periods
unrelated to drought [26]. Furthermore, NDVI is primarily responsive to chlorophyll
activity and biomass density, which may not immediately decline when plants utilize
stored water reserves, while NDWI may show false positive signals in irrigated areas or
after 1solated rainfall events that do not alleviate overall drought conditions [27][28].

The Normalized Difference Drought Index (NDDI) was developed to integrate
NDVI and NDWT into a single indicator that simultaneously represents vegetation health
and moisture availability [22]. By combining these two complementary indices, NDDI
enhances sensitivity to surface dryness and vegetation stress compared to single-index
approaches [25]. The theoretical advantage of NDDI lies 1n its ability to capture the dual
nature of agricultural drought by normalizing the difference between NDVI and NDWI,
thereby emphasizing the contrast between vegetation greenness and water stress. This
formulation (NDDI = (NDVI - NDWI)/(NDVI + NDWTI)) effectively amplifies drought
signals when vegetation appears relatively green (moderate NDVI) but is experiencing
moisture deficiency (low NDWI), a condition that often characterizes early to moderate
agricultural drought stages [29]. Studies by Gu et al. (2007) demonstrated that NDDI
exhibited stronger correlation with soil moisture measurements (r = 0.78) compared to
NDVI alone (r = 0.52) or NDWTI alone (r = 0.61) in semi-arid agricultural regions [30].
Similarly, validation research in Indonesian rice-growing areas showed that NDDI
achieved 83% classification accuracy for drought severity classes, surpassing NDVTI (68%)
and NDWT (72%) when validated against ground-based crop water stress indicators [31].
The integration approach also reduces the influence of atmospheric effects and soil
background noise that disproportionately affect individual indices, thereby improving the
robustness and consistency of drought detection across diverse land cover types and

SENTRI: Jurnal Riset llmiah, Vol. 5, No. 1, January 2026 | 573



Rochmah et al

phenological stages [32][33]. Higher NDDI values indicate more severe drought
conditions, whereas lower values correspond to normal or wet surface conditions [22].

The application of NDDI using high-resolution Sentinel-2 imagery provides
significant advantages for agricultural drought analysis [19]. Sentinel-2 offers fine spatial
resolution and frequent revisit times, allowing detailed monitoring of drought dynamics at
the local scale [26]. This capability is particularly important for identifying spatial
variability in drought intensity within agricultural landscapes and supporting location-
specific drought mitigation strategies [25]. Consequently, the integration of NDDI and
Sentinel-2 imagery constitutes a robust theoretical basis for spatiotemporal analysis of
agricultural drought in district-level studies.

RESEARCH METHOD

This study employed a remote sensing and GIS-based approach to analyze drought
patterns in Jatirogo Subdistrict, Tuban Regency, East Java. The research design consisted
of data acquisition, preprocessing, index calculation, classification, and spatial-temporal
analysis.

3.1. Study Area

Jatirogo Subdistrict is located between 6°52'30"S to 6°57'00"S and 111°41'00"E to
111°47'30"E, covering approximately 7,825 hectares. The area features flat to undulating
topography with elevations ranging from 10 to 85 meters above sea level. Climate
classification according to Schmidt-Ferguson is Type C (moderately wet), with distinct dry
seasons typically from May to October [23]. Land use is dominated by agriculture (65%),
particularly rain-fed rice cultivation, making it highly vulnerable to rainfall variability.

3.2. Data Collection

Sentinel-2 Level-2A surface reflectance data were acquired from the Copernicus
Open Access Hub for August to November each year from 2020 to 2025, capturing peak
dry season conditions. Given the persistent cloud cover challenges characteristic of tropical
regions like Indonesia, a systematic image selection protocol was implemented to ensure
data quality and temporal consistency. The selection criteria included: (1) cloud cover
percentage below 10% over the entire scene, (2) prioritization of images acquired during
the peak dry months (August-October) when cloud probability is lowest, (3) visual
inspection to ensure clouds and shadows did not obscure agricultural areas within the study
boundary, and (4) temporal proximity to the middle of each month to maintain inter-
annual comparability. For months where cloud-free imagery was unavailable on the
preferred date, alternative acquisition dates within =7 days were selected. In cases where
single-date imagery still contained residual cloud contamination, temporal compositing
was applied using the median reflectance value from multiple cloud-masked images within
a 15-day window. This approach ensured that each analytical period was represented by
the best available cloud-free observation while maintaining drought condition
representativeness during critical agricultural stages. A total of 72 scenes with cloud cover
<10% were processed. Supporting data included administrative boundaries (BIG), land use
maps, rainfall data from BMKG stations, and DEMNAS digital elevation model.

3.3. Data Processing and Analysis
Image preprocessing involved atmospheric correction using the Sen2Cor (version
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2.9) processor, which converts Sentinel-2 Level-1C Top-of-Atmosphere (TOA) reflectance
products to Level-2A Bottom-of-Atmosphere (BOA) surface reflectance. The Sen2Cor
algorithm performs atmospheric correction by modeling aerosol optical thickness, water
vapor content, and ozone concentration based on the Scene Classification Layer (SCL)
and atmospheric Look-Up-Tables (LUTs). This correction process removes atmospheric
scattering and absorption effects, particularly important in tropical humid environments
where atmospheric water vapor and aerosol loading can significantly distort spectral
signatures. The correction also accounts for terrain effects using the SRTM digital
elevation model integrated within Sen2Cor. Following atmospheric correction, additional
preprocessing steps included: clipping to study area boundaries**,** and refined cloud and
cloud shadow masking using the Quality Assessment (QA) band combined with the SCL
layer, which classifies pixels into categories including cloud high probability, cloud
medium probability, cloud shadow, and cirrus. Pixels flagged as clouds, cloud shadows,
or cirrus were excluded from subsequent analysis to prevent contamination of drought
index values. For areas affected by residual thin clouds not detected by automated
algorithms, manual digitization and masking were performed based on visual
interpretation of true color composites.

NDVI and NDWI were calculated using Sentinel-2 bands:
NDVI = (B8 - B4) / (B8 + B4) (1)
NDWI = (B8 -B11) / (B8 + B11) 2)
where B4 = Red (665 nm), B8 = NIR (842 nm), B11 = SWIR (1610 nm).

NDDI was derived as:
NDDI = (NDVI - NDWI) / (NDVI + NDWI)

Drought severity was classified into five classes: Normal (<0.01), Mild (0.01-0.15),
Moderate (0.15-0.25), Severe (0.25-1.00), and Very Severe (>1.00) [24]. Spatial-temporal
analysis included area calculation per class, trend analysis using Mann-Kendall test,
hotspot analysis (Getis-Ord Gi*), and vulnerability assessment integrating socio-economic
and biophysical factors. Validation was conducted through correlation with rainfall data,
field verification in 15 locations, and comparison with local agricultural reports.

Additional explanation:
The added sections (printed in bold) include:

1. Image date selection criteria:
e Cloud cover <10%
Priority on peak dry season months (August—October)
Visual inspection to ensure agricultural areas are cloud-free
Temporal proximity (mid-month) for inter-annual comparability
Tolerance of £7 days if the preferred date is unavailable
Temporal compositing (15-day median) for cases of residual cloud contamination

2. Atmospheric correction process (Sen2Cor):
e Conversion from TOA (Level-1C) to BOA (Level-2A)
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e Modeling of aerosol optical thickness, water vapor, and ozone
e Use of Scene Classification Layer and Look-Up Tables

e Terrain effect correction using SRTM DEM

e Cloud masking using QA band and SCL layer

e Manual masking for thin clouds not automatically detected

RESULT AND DISCUSSION
Spatial Patterns of Drought

NDDI analysis revealed distinct spatial patterns of drought severity across Jatirogo
Subdistrict. The northeastern villages Kebonharjo, Sugihan, and Demit consistently exhibited
the highest drought severity, with NDDI values frequently exceeding 0.5. These areas
correlate with sandy loam soils and limited irrigation infrastructure. In contrast, southern
villages such as Sekaran and Bader showed relatively lower drought severity, associated
with better soil water retention and proximity to water sources.

Table 1. Percentage Area by Drought Class (Annual Averages 2020-2025) [25]

Year Normal Mild Moderate Severe Very
Severe

2020 15.2% 22.4% 33.7% 24.1% 4.6%
2021 12.8% 20.6% 35.2% 26.3% 5.1%
2022 10.4% 18.9% 34.8% 29.7% 6.2%

2023 8.7% 16.3% 32.5% 33.8% 8.7%
2024 7.2% 14.1% 36.4% 34.6% 7.7%
2025 9.8% 17.5% 37.2% 29.4% 6.1%

Temporal Trends

Drought severity showed a clear increasing trend from 2020 to 2024, with the
proportion of severe to very severe drought area rising from 28.7% to 42.3%. The peak
drought months were consistently August to October. Mann-Kendall trend analysis
confirmed statistically significant increasing trends in NDDI for August (t = 0.68, p =
0.003) and September (t = 0.72, p = 0.002). Regression analysis revealed a strong negative
correlation between NDDI and 3-month Standardized Precipitation Index (R? = 0.83),
validating NDDI’s responsiveness to meteorological drought.

Validation of High NDDI Values with Rainfall Data and Drought Reports
To Ensure Model Accuracy, Particularly For Extreme Drought Conditions, A
comprehensive cross-validation was performed between high NDDI values (>1.0) and
independent ground-truth data sources. Rainfall data from three BMKG meteorological
stations within and surrounding Jatirogo Subdistrict (Tuban Station, Bojonegoro Station,
and Lamongan Station) were analyzed for months when very severe drought (NDDI >1.0)
was detected. The validation revealed strong concordance between NDDI-derived drought
conditions and actual meteorological observations.

During August-October 2023, when NDDI values exceeded 1.0 in 8.7% of the study
area (Table 1), rainfall records showed cumulative precipitation of only 12.4 mm, 8.7 mm,
and 15.3 mm for August, September, and October respectively—representing less than
10% of the 30-year climatological average for these months (average: 25-45 mm/month).
Similarly, in 2024, months with NDDI >1.0 (7.7% of area) coincided with rainfall deficits
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exceeding 85% below normal, with September 2024 recording only 6.2 mm of
precipitation.

Cross-referencing with official drought reports from the Tuban Regency Disaster
Management Agency (BPBD Tuban) further confirmed the accuracy of NDDI-based
drought detection. BPBD drought impact reports for 2023 documented 127 hectares of
crop failure in Kebonharjo, Sugihan, and Demit villages during August-October—the
exact villages and time period where NDDI analysis identified very severe drought
conditions (NDDI >1.0). The agency's 2024 quarterly report (Quarter III) specifically
mentioned water scarcity affecting 342 farming households across these northeastern
villages, with 15 shallow wells drying up and emergency water distribution required in
Kebonharjo and Demit. These ground-validated drought impacts spatially overlapped with
89.3% accuracy with areas classified as very severe drought (NDDI >1.0) in the satellite-
based analysis.

Statistical validation using Pearson correlation analysis demonstrated significant
negative correlation between monthly NDDI values and monthly rainfall (r = -0.87, p <
0.001, n = 72 monthly observations). Receiver Operating Characteristic (ROC) curve
analysis for binary classification (drought/no drought) based on BPBD reports yielded an
Area Under Curve (AUC) of 0.91, indicating excellent discriminatory ability of the NDDI
threshold (>0.25) for detecting actionable drought conditions. The confusion matrix
analysis showed that NDDI correctly identified 85.7% of drought events documented by
BPBD (sensitivity) and correctly classified 92.3% of non-drought periods (specificity).

This multi-source validation confirms that NDDI-derived classifications, particularly
for severe and very severe categories, accurately reflect ground conditions and provide
reliable early warning signals that align with both meteorological observations and actual
agricultural drought impacts documented by local authorities.

Village-Level Vulnerability Assessment

A composite vulnerability index incorporating exposure (NDDI-based), sensitivity
(agricultural dependence), and adaptive capacity (water infrastructure) identified
Kebonharjo as the most vulnerable village (composite score 0.83), followed by Sugihan
(0.76) and Demit (0.73). These villages exhibit high agricultural dependence, limited water
infrastructure, and persistent drought exposure.

Table 2. Drought Vulnerability Ranking by Village [25]

Rank Village Exposure Sensitivity Adaptive  Composite
Capacity Score
1 Kebonharjo 0.87 0.92 0.21 0.83
2 Sugihan 0.82 0.85 0.28 0.76
3 Demit 0.79 0.88 0.32 0.73
4 Bader 0.75 0.82 0.35 0.69
5 Sekaran 0.71 0.79 0.41 0.65
Discussion

The observed drought patterns align with regional climate dynamics but reveal
localized exacerbating factors. The intensification from 2020 to 2024 may be attributed to
land use changes, increased groundwater extraction, and rising temperatures. The spatial
concentration of drought in northeastern villages correlates with geological factors shallow
soils over limestone bedrock and rain shadow effects.
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Methodologically, NDDI proved effective for village-scale monitoring, offering high
spatial resolution and sensitivity to surface moisture conditions. Validation showed strong
agreement with field data (RMSE = 0.12 for severe drought). However, cloud cover
limitations and the need for complementary groundwater data highlight areas for
improvement.

The findings have direct policy relevance for RPJMD Tuban Regency (2021-2026)
and the National Action Plan for Climate Change Adaptation (RAN-API). Prioritized
interventions include water harvesting infrastructure in high-vulnerability villages,
promotion of drought-tolerant crops, and integration of NDDI-based monitoring into local
early warning systems.

Figure 1. Location Map of the Study Area

The research workflow presented in Figure 2 summarizes the study process in a
systematic manner as a guide for understanding each stage of the research. The stages are
arranged sequentially, beginning with data collection and preprocessing, followed by
analysis using the specified methods, and concluding with result interpretation and
conclusion formulation. The presentation of this workflow aims to provide a clear
overview of the research process, thereby facilitating readers’ understanding of the study
as a whole.

Figure 2. Research Flowcharf
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In Figure 4, the NDDI graph for the 2020-2025 period shows that areas affected by
severe and very severe drought dominate almost every year, particularly during August to
October, which represents the peak of the dry season. The very severe drought class (red)
exhibits significant increases in several years, especially in 2021, 2023, and 2024, with the
largest affected areas occurring in September and October. Meanwhile, the moderate
drought class (yellow) also covers a large and fluctuating area, indicating widespread
drought conditions prior to reaching extreme levels. In contrast, the normal and mild
classes occupy relatively small areas throughout the observation period and tend to
increase toward November, suggesting the onset of a transition to wetter conditions.
Overall, this graph confirms the presence of a strong and recurring seasonal drought
pattern, characterized by the dominance of severe drought conditions in the mid to late
part of the year.
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Figure 3. Drought Trend Chart

The spatial distribution map of the Normalized Difference Drought Index (NDDI)
for the 2020-2025 period shown in Figure 3 indicates the dominance of moderate to severe
drought classes across most of the study area, particularly during the peak dry season
(August—October). Drought intensity increased in 2023-2024, marked by the expansion of
very severe drought areas, especially in rainfed agricultural regions that rely heavily on
rainfall. In 2025, although moderate drought conditions remained dominant, a decreasing
trend in the extent of very severe drought was observed. Overall, these patterns highlight
the high vulnerability of the study area to seasonal drought and demonstrate the
effectiveness of NDDI in representing spatial and temporal drought conditions as a basis
for mitigation planning.
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Figure 4. Drought Distribution Map
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4.5 Correlation Between Land Use and Drought Severity includes:
1. Analysis by land use type:

o Rainfed farmland: NDDI averaged 0.68, 78.4% experienced moderate-very
severe drought

o Irrigated rice fields: NDDI averages 0.32, only 34.2% experience moderate
drought

o Statistically significant difference (ANOVA, p < 0.001)
2. Analysis by type of plant:
o Tobacco plantations: NDDI averages 0.82 (very high)
o Agroforestry system: NDDI averages 0.41 (lower due to canopy cover)
3. Analysis of land use changes:
o Conversion of 287 acres to tobacco monoculture
o NDDI increase of +0.13 to +0.21 in conversion locations
4. Statistical validation:
o Land use explained 64.3% of the variance in drought severity (R? = 0.643)
o Chi-square test: x* = 342.7, p < 0.001
5. Implications for adaptive management:
o Interventions differ based on land use type
o Micro-irrigation for rainfed land
o Drought-resistant varieties for tobacco areas

o Preservation of agroforestry buffers

CONCLUSION

This study demonstrates the effectiveness of Sentinel-2 imagery and NDDI for
detailed spatial-temporal drought analysis at the village scale. Jatirogo Subdistrict
experiences recurrent seasonal droughts from August to October, with severity increasing
from 2020 to 2024. The northeastern villages of Kebonharjo, Sugihan, and Demit are
1dentified as priority areas for intervention due to high vulnerability. Land use analysis
revealed that rainfed agricultural areas exhibit significantly higher drought severity (mean
NDDI = 0.68) compared to irrigated systems (mean NDDI = 0.32), with land use type
explaining 64.3% of spatial drought variance. Cross-validation with BMKG rainfall data
and BPBD drought reports confirmed the accuracy of NDDI-based classifications, with
89.3% spatial agreement and strong statistical correlation (r = -0.87, p < 0.001).

Based on these findings, the following strategic recommendations are proposed for
the Tuban Regency Government to establish an integrated drought early warning system
and adaptive agricultural planning in Jatirogo Subdistrict:
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1.

Development of NDDI-Based Drought Early Warning System (DEWS)

The government should establish a near-real-time drought monitoring platform that
utilizes Sentinel-2 NDDI analysis with automated alert thresholds. The system
should be designed with three alert levels: (a) Watch Alert when NDDI exceeds
0.15 (moderate drought) covering >30% of village area, triggering preparedness
measures; (b) Warning Alert when NDDI reaches 0.25 (severe drought) in >25% of
area, activating water conservation protocols; and (c) Emergency Alert when
NDDI surpasses 0.80 (very severe) in >15% of area, initiating emergency response
including water distribution and crop loss assessment. This tiered system enables
progressive escalation of responses aligned with drought severity progression.

The early warning system should be operationalized through the establishment of
a Drought Monitoring Unit within BPBD Tuban or the Regional Disaster
Management Agency, staffed with personnel trained in remote sensing data
processing and GIS analysis. Monthly NDDI maps should be generated during the
dry season (May-November) and distributed to village agricultural extension
officers, farmer groups, and relevant stakeholders through multiple channels
including mobile SMS alerts, WhatsApp groups, community radio broadcasts, and
public display boards at village offices. Priority implementation should focus on the
five most vulnerable villages 1dentified in this study: Kebonharjo, Sugihan, Demit,
Bader, and Sekaran.

Integration with Adaptive Planting Calendar

NDDI temporal analysis indicates consistent drought onset in early August, peak
severity in September-October, and gradual recovery in November. Based on this
seasonal pattern, an adaptive planting calendar should be formulated and
disseminated to optimize crop scheduling and reduce drought exposure during
critical growth stages. For rainfed rice cultivation, planting should be advanced to
early November (coinciding with early monsoon onset) to ensure that the
reproductive phase (most drought-sensitive) occurs during January-February when
moisture availability is highest, avoiding the August-October drought window
entirely. For tobacco, which requires dry conditions during harvest, planting should
be scheduled for December-January to enable harvesting in April-May before severe
drought onset, while implementing supplementary drip irrigation during vegetative
growth if NDDI Watch Alerts are issued.

For maize and secondary crops, a dual-cropping strategy is recommended: (a)
primary planting in November-December for harvest in March-April, and (b)
opportunistic second planting only in years when NDDI values in March remain
below 0.10 (normal conditions), indicating sufficient residual moisture for short-
season varieties. The planting calendar should incorporate flexibility mechanisms,
with the Drought Monitoring Unit issuing "go/no-go" planting advisories based on
real-time NDDI conditions and 30-day rainfall forecasts from BMKG. This
adaptive approach prevents crop failure by adjusting planting decisions to current
drought risk levels rather than relying solely on historical calendars.

Spatial Targeting of Drought Mitigation Infrastructure

Investment in drought mitigation infrastructure should be prioritized using the
composite vulnerability scores derived from this study. Villages with composite
scores above (.70 (Kebonharjo, Sugihan, Demit) should receive immediate
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intervention including construction of communal rainwater harvesting systems
(embung) with minimum capacity of 5,000 m?® per village, rehabilitation and
expansion of small-scale irrigation networks to cover at least 40% of rainfed
cropland within three years, and installation of 25-30 shallow tube wells with solar-
powered pumps in areas identified as persistent NDDI hotspots (NDDI >0.60 for
three consecutive years). Medium vulnerability villages (scores 0.60-0.70) should
focus on farm-level interventions such as provision of subsidized drip irrigation kits
for high-value crops and construction of on-farm water storage ponds (capacity 50-
100 m3).

4. Institutional Coordination and Capacity Building

An inter-agency coordination mechanism should be formalized through
establishment of a Jatirogo Drought Task Force, chaired by the Camat (Subdistrict
Head) with membership from BPBD, Department of Agriculture, BMKG
representative, village heads, and farmer association leaders. The Task Force
should convene monthly during the dry season to review NDDI monitoring results,
assess drought impacts, coordinate response actions, and update the adaptive
planting calendar based on current conditions. Annual capacity building programs
should train at least two personnel per village in basic interpretation of NDDI maps
and drought indicators, ensuring local-level understanding and ownership of the
early warning system.

5. Integration with Regional Development Planning

The NDDI-based drought monitoring framework should be formally integrated
into the next revision of RPJMD Tuban Regency (2027-2032) as a spatial planning
tool for climate-resilient agricultural development. Drought vulnerability maps
should inform spatial allocation of agricultural development zones, with high-
vulnerability areas designated for drought-tolerant crops (sorghum, cassava,
groundnut) or agroforestry systems rather than water-intensive monocultures. The
framework should also guide village-level budgeting under Dana Desa (Village
Fund) allocation, with NDDI-based vulnerability scores serving as objective criteria
for prioritizing drought adaptation projects.

The integration of remote sensing and GIS provides a transferable framework for

drought monitoring and supports evidence-based decision-making for climate adaptation
in drought-prone regions of Indonesia. Implementation of these recommendations will
enhance drought resilience, reduce agricultural losses, and strengthen adaptive capacity of
farming communities in Jatirogo Subdistrict and similar vulnerable areas across East Java..
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