Analisis Performa Metode Machine Learning dalam Mengidentifikasi Penyebab Ulasan Rating Satu Aplikasi MyBluebird

Authors

  • Almira Farradinda Azziizah Teknologi Informasi, Universitas Islam Negeri Walisongo Semarang, Indonesia
  • Hery Mustofa Teknologi Informasi, Universitas Islam Negeri Walisongo Semarang, Indonesia
  • Khothibul Umam Teknologi Informasi, Universitas Islam Negeri Walisongo Semarang, Indonesia
  • Maya Rini Handayani Teknologi Informasi, Universitas Islam Negeri Walisongo Semarang, Indonesia

DOI:

https://doi.org/10.55681/jige.v6i4.4704

Keywords:

Application, Classification, Machine Learning, Review, Transportation

Abstract

This study addresses the increasing prevalence of negative user reviews for the MyBluebird ride-hailing application, focusing on the identification and classification of the main causes of one-star ratings. The research aims to compare the effectiveness of Support Vector Machine, Random Forest, and Naïve Bayes algorithms in classifying user complaints. Employing a quantitative experimental approach, the study utilizes a dataset of 1,399 one-star reviews collected purposively from Google Play Store. Data preprocessing includes cleaning, tokenization, and feature extraction using TF-IDF. The classification models are evaluated using accuracy, precision, recall, and F1-score metrics. Results indicate that Random Forest achieves the highest accuracy (90%), outperforming the other algorithms, with bugs/errors as the most frequent complaint, followed by driver performance, other issues, and price. The study concludes that machine learning-based classification can effectively map user dissatisfaction, though data imbalance remains a limitation. Future research should apply data balancing techniques and expand the dataset for broader generalization. Practical implications suggest that developers can utilize automated classification to improve service quality and address user needs more efficient.

Downloads

Download data is not yet available.

References

Adi, I. N., Putra, M., & Pramartha, C. (2025). Optimasi hyperparameter algoritma support vector machine dalam klasifikasi penyakit β-thalassemia. [Journal Name], 3, 283–294.

Alfarobby, A. N., & Irawan, H. (2024). Analisis sentimen kepuasan konsumen pengguna transportasi online pada ulasan Google Playstore menggunakan Indobert dan topic modeling (Studi kasus: Gojek dan Grab).

Amalia, D. H., & Yustanti, W. (2021). Klasifikasi buku menggunakan metode support vector machine pada digital library. J. Informatics Comput. Sci., 3(01), 55–61. https://doi.org/10.26740/jinacs.v3n01.p55-61

Chamidy, T., & Informatika, M. (2025). Application of SMOTE in sentiment analysis of MyXL user reviews on Google Play Store, 10(1), 74–86.

Cresswell, J. W. (2022). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.

Emzir. (2021). Metodologi penelitian pendidikan: Kuantitatif dan kualitatif. Rajawali Pers.

Gitacahyani, A., Purnamasari, A. I., & Ali, I. (2024). Klasifikasi ulasan aplikasi Linkedin menggunakan metode Naïve Bayes classifier. JATI (Jurnal Mhs. Tek. Inform.), 8(1), 176–181. https://doi.org/10.36040/jati.v8i1.8310

Hamied Nababan, A., & Hutagalung, M. Y. (2023). Hyperparameter tuning pada model stance detection menggunakan GridSearchCV. J. Sains dan Teknol., 5(1), 205–209. https://doi.org/10.55338/saintek.v5i1.1505

Iqrom, M., Afdal, M., Novita, R., Rahmawita, M., & Khairil Ahsyar, T. (2025). Sentiment analysis of Gojek, Grab, and Maxim applications using support vector machine algorithm analisis sentimen aplikasi Gojek, Grab, dan Maxim menggunakan algoritma support vector machine, 10(1).

Khairunnisa, S., Adiwijaya, A., & Al Faraby, S. (2021). Pengaruh text preprocessing terhadap analisis sentimen komentar masyarakat pada media sosial Twitter (Studi kasus pandemi COVID-19). J. Media Inform. Budidarma, 5(2), 406. https://doi.org/10.30865/mib.v5i2.2835

Larasati, F. A., Ratnawati, D. E., & Hanggara, B. T. (2022). Analisis sentimen ulasan aplikasi Dana dengan metode random forest. J. Pengemb. Teknol. Inf. dan Ilmu Komput., 6(9), 4305–4313.

Larasati Syarafina Qamarani, M. R. (2020). Klasifikasi level banjir menggunakan random forest dan support vector machine, 1–9. https://doi.org/10.22146/ijeis.xxxx

Meli, et al., & Izzal, M. (2024). Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes. AITI J. Teknol. Inf., 21(2), 298–311. https://doi.org/10.36040/jati.v8i1.8708

Prabowo, A. S., & Kurniadi, F. I. (2023). Analisis perbandingan kinerja algoritma klasifikasi dalam mendeteksi penyakit jantung. J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), 7(1), 56–61. https://doi.org/10.47970/siskom-kb.v7i1.468

Putri, R. R., & Cahyono, N. (2024). Publik pemerintah DKI Jakarta dengan algoritma, 8(2), 2363–2371.

Radhi, T., Fitrah, M., & Nurdin, Y. (2021). 21428-72955-1-Pb. KITEKTRO J. Komputer, Inf. Teknol. dan Elektro, 6(2), 7–14.

Radiena, G., & Nugroho, A. (2023). Analisis sentimen berbasis aspek pada ulasan aplikasi Kai Access menggunakan metode support vector machine. J. Pendidik. Teknol. Inf., 6(1), 1–10. https://doi.org/10.37792/jukanti.v6i1.836

Ramadani, N. C., Tahyudin, I., & Shouni Barkah, A. (2024). Perbandingan algoritma support vector machine, decision tree, dan logistic regresion pada analisis sentimen ulasan aplikasi Netflix. J. Nas. Teknol. dan Sist. Inf., 10(2), 110–117. https://teknosi.fti.unand.ac.id/index.php/teknosi/article/view/2746

Septiani, D., & Isabela, I. (2023). Analisis term frequency inverse document frequency (TF-IDF) dalam temu kembali informasi pada dokumen teks. SINTESIA J. Sist. dan Teknol. Inf. Indones., 1(2), 81–88.

Shalihat, B. (2023). Implementasi metode rule-based pada proses silabifikasi dalam bahasa Aceh, 1–68. https://repository.ar-raniry.ac.id/id/eprint/36191

Subagja, R. A., Widiastiwi, Y., & Chamidah, N. (2021). Klasifikasi ulasan aplikasi Jenius pada Google Play Store menggunakan algoritma Naive Bayes. Inform. J. Ilmu Komput., 17(3), 197. https://doi.org/10.52958/iftk.v17i3.3652

Sudaryono, A. (2023). Metode penelitian kuantitatif dan kualitatif. Bumi Aksara.

Sugiyono. (2022). Metode penelitian kuantitatif, kualitatif, dan R&D (2nd ed.). Alfabeta.

Vitalaya, N. A. R. (2024). Perbandingan tipe sampling pada klasifikasi minat TIK bagi skripsi.

Downloads

Published

2025-12-07

How to Cite

Azziizah, A. F., Mustofa, H., Umam, K., & Handayani, M. R. (2025). Analisis Performa Metode Machine Learning dalam Mengidentifikasi Penyebab Ulasan Rating Satu Aplikasi MyBluebird. Jurnal Ilmiah Global Education, 6(4), 2871–2888. https://doi.org/10.55681/jige.v6i4.4704