Implementasi dan Analisis Algoritma Content-Based Filtering Pada Sistem Rekomendasi Produk Tas pada Basis Data MySQL

Authors

  • Aryoga Pranata Fakultas Teknik, Universitas Widyatama Bandung, Indonesia
  • Feri Sulianta Fakultas Teknik, Universitas Widyatama Bandung, Indonesia

DOI:

https://doi.org/10.55681/jige.v6i3.4017

Keywords:

Recommendation system, content-based filtering, natural language processing, MySQL, e-commerce

Abstract

Recommendation systems have become a crucial component in various digital platforms to enhance user experience by providing relevant product suggestions. This research aims to implement and analyze the Content-Based Filtering (CBF) algorithm in a product recommendation system using the MySQL database. The CBF algorithm works by recommending products similar to those already liked or purchased by the user based on the features of those products. In this context, features such as product category, brand, and text description are used to generate relevant recommendations. The implementation of this algorithm involves using Natural Language Processing (NLP) techniques to extract features from product descriptions stored in the database. The first phase of this research involves collecting and processing product data to ensure consistency and readiness for further analysis. Key features of each product are then extracted and their similarities calculated using the CBF algorithm. Subsequently, the recommendation results are tested and evaluated using performance metrics such as Precision and Recall to determine the system's effectiveness in providing relevant and beneficial recommendations to users. The research findings indicate that the CBF algorithm can provide fairly accurate and relevant product recommendations, enhancing user satisfaction by offering product choices that match their preferences. Performance evaluation also demonstrates that the system is effective in recognizing user preference patterns and providing useful suggestions. Additionally, the use of the MySQL database offers advantages in efficient data management and processing. With this recommendation system, it is expected to improve user satisfaction and engagement in the e-commerce platform. The use of CBF techniques enables the system to continually learn and adapt to user preferences, providing increasingly relevant recommendations over time.

Downloads

Download data is not yet available.

References

Aisha, D., & Kusumawati, R. (2022). Implementasi metode algoritma collaborative filtering & k-nearest neighbor pada sistem rekomendasi e-commerce. Jurnal Ilmiah Sistem Informasi dan Ilmu Komputer, 2(3), 25–38.

Alkaff, M., Khatimi, H., & Eriadi, A. (2020). Sistem Rekomendasi Buku Menggunakan Weighted Tree Similarity dan Content Based Filtering. MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput, 20(1), 193–202.

Aprianto, A. (2022). TA: Penerapan Algoritma Content-Based Filtering untuk Rekomendasi Destinasi Wisata pada Aplikasi Picnicker. Universitas Dinamika.

Ardiansyah, R., Bianto, M. A., & Saputra, B. D. (2023). Sistem Rekomendasi Buku Perpustakaan Sekolah menggunakan Metode Content-Based Filtering. Jurnal CoSciTech (Computer Science and Information Technology), 4(2), 510–518.

Christian, Y., & Kelvin, K. (2022). Rancang Bangun Aplikasi Kursus Online Berbasis Web Dengan Sistem Rekomendasi Metode Content-Based Filtering. Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, 7(1), 23–36.

DQLab. (2024). Content-based filtering dalam algoritma data science. Diakses pada 19 Mei 2024 dari https://dqlab.id/content-based-filtering-dalam-algoritma-data-science

Kusrini, M. K., & Kom, M. (2007). Konsep dan aplikasi sistem pendukung keputusan. Penerbit Andi, 14–21.

Laksito, A. (2022). Sistem rekomendasi content-based filtering menggunakan PHP. Diakses pada 19 Mei 2024 dari https://blog.ariflaksito.net/2022/07/system-rekomendasi-content-based-php-mysql-part1.html

Larasati, F. B. A., & Februariyanti, H. (2021). Sistem Rekomendasi Product Emina Cosmetics Dengan Menggunakan Metode Content-Based Filtering. Jurnal Manajemen Informatika Dan Sistem Informasi, 4(1), 45–54.

Mardani, L. D. (2024). Implementasi Rekomendasi Content Based Filtering Dengan Apriori Berbasis Android (Doctoral dissertation, Universitas Mercu Buana Jakarta).

Mondi, R. H., Wijayanto, A., & Winarno, W. (2019). Recommendation system with content-based filtering method for culinary tourism in Mangan application. ITSMART: Jurnal Teknologi dan Informasi, 8(2), 65–72.

Nastiti, P. (2019). Penerapan Metode Content Based Filtering Dalam Implementasi Sistem Rekomendasi Tanaman Pangan. Teknika, 8(1), 1–10.

Parwita, W. G. S. (2019). Pengujian Akurasi Sistem Rekomendasi Berbasis Content-Based Filtering. Inform. Mulawarman J. Ilm. Ilmu Komputer, 14(1), 27.

Priskila, R., Sari, N. N. K., & Putra, P. B. A. A. (2024). Implementasi Content-Based Filtering Menggunakan Tf-Idf and Cosine Similarity Untuk Sistem Rekomendasi Resep Masakan. Jurnal Teknologi Informasi: Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika, 18(1), 43–51.

Putri, M. W., Muchayan, A., & Kamisutara, M. (2020). Sistem rekomendasi produk pena eksklusif menggunakan metode content-based filtering dan TF-IDF. JOINTECS (Journal of Information Technology and Computer Science), 5(3), 229–236.

Ridhwanullah, D., Kumarahadi, Y. K., & Raharja, B. D. (2024). Content-Based Filtering pada Sistem Rekomendasi Buku Informatika. Jurnal Ilmiah SINUS, 22(2), 57–66.

Downloads

Published

2025-08-20

How to Cite

Pranata, A., & Sulianta, F. (2025). Implementasi dan Analisis Algoritma Content-Based Filtering Pada Sistem Rekomendasi Produk Tas pada Basis Data MySQL. Jurnal Ilmiah Global Education, 6(3), 1419–1444. https://doi.org/10.55681/jige.v6i3.4017