Implementasi Algoritma Naïve Bayes untuk Mengevaluasi Reputasi Merek (Studi Kasus: Toko XYZ)

Authors

  • Rizka Putera Suryaresmana Program Studi Informatika, Fakultas Teknik, Universitas Widyatama Bandung, Indonesia
  • Feri Sulianta Program Studi Informatika, Fakultas Teknik, Universitas Widyatama Bandung, Indonesia

DOI:

https://doi.org/10.55681/jige.v6i3.4016

Keywords:

Brand evaluation, brand reputation, classsification, naïve bayes, sentiment analysis

Abstract

Brand reputation assessment is a crucial aspect for companies in maintaining consumer trust and satisfaction. However, evaluating brand reputation is often challenging, especially for companies that lack the resources to perform it manually. This study aims to implement the Naïve Bayes algorithm in evaluating brand reputation, using a case study of Toko XYZ. The Naïve Bayes algorithm is utilized to perform sentiment analysis on text data related to the brand, such as customer reviews, which are then classified into positive, negative, or neutral sentiments. The results of this analysis are expected to provide the company with a deeper insight into consumer perceptions of their brand. This research also aims to support companies in making strategic decisions related to brand reputation management. Based on the findings, the Naïve Bayes algorithm proves to be effective in analyzing customer sentiment, providing companies with a clearer understanding of how their brand is perceived in the market, and enabling them to better respond to consumer needs.

Downloads

Download data is not yet available.

References

Agustina, N., Citra, D. H., Purnama, W., Nisa, C., & Kurnia, A. R. (2022). Implementasi Algoritma Naïve Bayes Untuk Analisis Sentimen Ulasan Shopee Pada Google Play Store: The Implementation Of Naïve Bayes Algorithm For Sentiment Analysis Of Shopee Reviews On Google Play Store. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2(1), 47-54.

Binus University. (2021). Apa itu text mining? Diakses pada 16 November 2024 dari https://sis.binus.ac.id/2021/04/23/apa-itu-text-mining/

Buana, M. I., & Arianto, D. B. (2024). Analisis Sentimen Ulasan Pengguna Aplikasi Zenpro Dengan Implementasi Algoritma Support Vector Machine (SVM). Adopsi Teknologi dan Sistem Informasi (ATASI, 3(1), 45-52.

Darwis, D., Siskawati, N., & Abidin, Z. (2021). Penerapan Algoritma Naïve Bayes Untuk Analisis Sentimen Review Data Twitter BMKG Nasional. Jurnal Tekno Kompak, 15(1), 131-145.

Dwianto, E., Sadikin, M., Informatika, J. T., & Komputer, F. I. (2021). Analisis Sentimen Transportasi Online Pada Twitter Menggunakan Metode Klasifikasi Naïve Bayes Dan Support Vector Machine. Format: Jurnal Ilmiah Teknologi Informasi, 10(1), 94.

Keni, K., Dharmawan, P., & Wilson, N. (2021). Pengaruh Corporate Reputation, Brand Satisfaction Dan Brand Attitude Terhadap Customer Loyalty Pada Industri Penerbangan di Indonesia. DeReMa (Development Research of Management): Jurnal Manajemen, 16(1), 79-95.

Muzaki, A., Febriana, V., & Cholifah, W. N. (2024). Analisis Sentimen Pada Ulasan Produk Di E-Commerce Dengan Metode Naïve Bayes. Jurnal Riset dan Aplikasi Mahasiswa Informatika (JRAMI, 5(4), 758-765.

Putra, M. Y., & Putri, D. I. (2022). Pemanfaatan Algoritma Naïve Bayes Dan K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Kelas XI. Jurnal Tekno Kompak, 16(2), 176-187.

Santoso, M. I., & Dzikrillah, A. R. (2024). Analisis Sentimen Pengguna Terhadap Kinerja Sistem Transportasi Umum Jakarta Menggunakan Algoritma Naïve Bayes. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(6), 3032-3043.

Salsabila, N. A., Sa’adah, U., & Fauzi, F. (2024, February). Analisis Sentimen Pada Ulasan Aplikasi Tokopedia Menggunakan Klasifikasi Naïve Bayes. In PRISMA, Prosiding Seminar Nasional Matematika (pp. 44-51).

Subecz, Z. (2021). Web-Development With Laravel Framework. Gradus, 8(1), 211-218.

Wahyudi, J., Asbari, M., Sasono, I., Pramono, T., & Novitasari, D. (2022). Database Management in MySQL. Edumaspul - Jurnal Pendidikan, 6(2), 2413-2417.

Valeria, G. (2023). Reputation Management Challenges: How To Overcome The Obstacles. Diakses pada 10 November 2024 dari https://www.netreputation.com/reputation-management-challenges-how-to-overcome-the-obstacles

Downloads

Published

2025-09-06

How to Cite

Suryaresmana, R. P., & Sulianta, F. (2025). Implementasi Algoritma Naïve Bayes untuk Mengevaluasi Reputasi Merek (Studi Kasus: Toko XYZ). Jurnal Ilmiah Global Education, 6(3), 1720–1734. https://doi.org/10.55681/jige.v6i3.4016