Faktor-Faktor Penentu Keberhasilan Implementasi Sistem Informasi Kesehatan Ditinjau Dari Perspektif Pengguna: Tinjauan Literatur Sistematis

Authors

  • Normalia Widyanti Program Pasca Sarjana, Universitas Jember, Indonesia
  • Abu Khoiri Fakultas Kedokteran Gigi, Universitas Muhammadiyah Yogyakarta, Indonesia
  • Iwan Dewanto Fakultas Kedokteran Gigi, Universitas Muhammadiyah Yogyakarta, Indonesia

DOI:

https://doi.org/10.55681/jige.v6i3.3836

Keywords:

Health information systems, success of information systems, acceptance and use of information systems

Abstract

The Health Information System is expected to support health development by producing quality data and information. However, in its implementation there are still obstacles, and the human factor is the most dominant obstacle. The interaction of information systems and humans gives rise to behavioral problems, so it is important to understand the factors that influence the success of SIK implementation from the user's perspective to increase the use of SIK. This research uses a literature review method from several databases. Research findings show that there are several factors that influence the success of SIK implementation, including performance expectations, business expectations, facilitating conditions, self-confidence and anxiety, social influence, information quality, intentions, attitudes, system quality, service quality, user satisfaction, and usage behavior. Understanding the factors that influence the success of Health Information System implementation will minimize the risk of failure, serve as a guide in improving the system, optimize the use of resources, ensure alignment with organizational goals, and encourage effective use of Health Information System.

Downloads

Download data is not yet available.

References

Admassu, W., & Gorems, K. (2024). Analyzing health service employees’ intention to use e-health systems in southwest Ethiopia: using UTAUT-2 model. BMC Health Services Research, 24(1), 1136. https://doi.org/10.1186/s12913-024-11567-y

Al-Otaibi, J., Tolma, E., Alali, W., Alhuwail, D., & Mohamed Aljunid, S. (2022). The Factors Contributing to Physicians’ Current Use of and Satisfaction With Electronic Health Records in Kuwait’s Public Health Care: Cross-sectional Questionnaire Study. JMIR Medical Informatics, 10(10). https://doi.org/10.2196/36313

Alquran, H., Banitaan, S., Bari, T., Chavarkar, Y., & Bellamy, A. (2024). The impact of trust, comfortability, usability and technophobia factors on acceptance of health information technology. Telematics and Informatics Reports, 15(February), 100159. https://doi.org/10.1016/j.teler.2024.100159

Alsyouf, A., Lutfi, A., Al-Bsheish, M., Jarrar, M., Al-Mugheed, K., Almaiah, M. A., Alhazmi, F. N., Masa’deh, R., Anshasi, R. J., & Ashour, A. (2022). Exposure Detection Applications Acceptance: The Case of COVID-19. International Journal of Environmental Research and Public Health, 19(12). https://doi.org/10.3390/ijerph19127307

Bagayoko, C. O., Tchuente, J., Traoré, D., Moukoumbi Lipenguet, G., Ondzigue Mbenga, R., Koumamba, A. P., Ondjani, M. C., Ndjeli, O. L., & Gagnon, M. P. (2020). Implementation of a national electronic health information system in Gabon: A survey of healthcare providers’ perceptions. BMC Medical Informatics and Decision Making, 20(1), 1–9. https://doi.org/10.1186/s12911-020-01213-y

Baldemor, R. V. V., Ong, A. K. S., Mejia, E. J. B., Diaz, J. F. T., & Gumasing, M. J. J. (2025). Telemedicine career pursuance among nurses in healthcare business processing outsourcing industries from the Philippines: A task-technology fit and technology acceptance approach. Computers in Human Behavior Reports, 17(October 2024), 100588. https://doi.org/10.1016/j.chbr.2025.100588

Barua, Z., & Barua, A. (2023). Modeling the predictors of mobile health adoption by Rohingya Refugees in Bangladesh: An extension of UTAUT2 using combined SEM-Neural network approach. Journal of Migration and Health, 8(May 2021), 100201. https://doi.org/10.1016/j.jmh.2023.100201

Bian, D., Xiao, Y., Song, K., Dong, M., Li, L., Millar, R., Shi, C., & Li, G. (2023). Determinants Influencing the Adoption of Internet Health Care Technology Among Chinese Health Care Professionals: Extension of the Value-Based Adoption Model With Burnout Theory. Journal of Medical Internet Research, 25. https://doi.org/10.2196/37671

Bîlbîie, A., Puiu, A. I., Mihăilă, V., & Burcea, M. (2024). Investigating Physicians’ Adoption of Telemedicine in Romania Using Technology Acceptance Model (TAM). Healthcare (Switzerland), 12(15), 1–21. https://doi.org/10.3390/healthcare12151531

Bogale, T. N., Willems, H., Bongassie, L. A., Eyob, Y., Mengesha, C. K., Yihun, B. Y., Mohammed, M., Wendrad, N., Melkamu, G., Daka, D. W., Meressa, S., & Bekele, T. A. (2023). Acceptability and use of the electronic community health information system and its determinants among health extension workers in Ethiopia: a retrospective cross-sectional observational study. BMC Medical Informatics and Decision Making, 23(1), 1–10. https://doi.org/10.1186/s12911-023-02385-z

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748

Demsash, A. W., Kalayou, M. H., & Walle, A. D. (2024). Health professionals’ acceptance of mobile-based clinical guideline application in a resource-limited setting: using a modified UTAUT model. BMC Medical Education, 24(1), 1–17. https://doi.org/10.1186/s12909-024-05680-z

Hailemariam, T., Atnafu, A., Gezie, L., Kaasbøll, J., Klein, J., & Tilahun, B. (2024). Intention to Use an Electronic Community Health Information System Among Health Extension Workers in Rural Northwest Ethiopia: Cross-Sectional Study Using the Unified Theory of Acceptance and Use of Technology 2 Model. JMIR Human Factors, 11(1). https://doi.org/10.2196/47081

Hidayat, F. (2020). Konsep Dasar Sistem Informasi Kesehatan (Cetakan ke). Penerbit Deepublish.

Husin, M., Rahman, N. A., Bujang, M. A., Ng, S. W., Juval, K., Hwong, W. Y., & Sivasampu, S. (2022). Translation and Validation of the Questionnaire on Acceptance to Telemedicine from the Technology Acceptance Model (TAM) for Use in Malaysia. BioMed Research International, 2022. https://doi.org/10.1155/2022/9123887

Ikenyei, U., & Haggerty, N. (2024). Validating the Delone and Mclean’s model in a developing country’s infectious disease pandemic context. BMC Infectious Diseases, 24(1), 1–9. https://doi.org/10.1186/s12879-024-09483-x

Jogiyanto. (2007a). Model Kesuksesan Sistem Teknologi Informasi (Ed. I). Penerbit ANDI.

Jogiyanto. (2007b). Sistem Informasi Keperilakuan. Penerbit ANDI.

Jones, C., Miguel-Cruz, A., & Brémault-Phillips, S. (2021). Technology acceptance and usability of the brainfx screen in canadian military members and veterans with posttraumatic stress disorder and mild traumatic brain injury: Mixed methods utaut study. JMIR Rehabilitation and Assistive Technologies, 8(2). https://doi.org/10.2196/26078

Kalankesh, L. R., Nasiry, Z., Fein, R., & Damanabi, S. (2020). Factors Influencing User Satisfaction with Information Systems: A Systematic Review. Galen Medical Journal, 9, e1686. https://doi.org/10.31661/gmj.v9i0.1686

Kang, H. J., Han, J., & Kwon, G. H. (2022). The Acceptance Behavior of Smart Home Health Care Services in South Korea: An Integrated Model of UTAUT and TTF. International Journal of Environmental Research and Public Health, 19(20). https://doi.org/10.3390/ijerph192013279

Liu, J., Gong, X., Weal, M., Dai, W., Hou, S., & Ma, J. (2023). Attitudes and associated factors of patients’ adoption of patient accessible electronic health records in China — A mixed methods study. Digital Health, 9(13). https://doi.org/10.1177/20552076231174101

Mendez, K. J. W., Budhathoki, C., Labrique, A. B., Sadak, T., Tanner, E. K., & Han, H. R. (2021). Factors associated with intention to adopt mhealth apps among dementia caregivers with a chronic condition: Cross-sectional, correlational study. JMIR MHealth and UHealth, 9(8). https://doi.org/10.2196/27926

Min, H., Li, J., Di, M., Huang, S., Sun, X., Li, T., & Wu, Y. (2024). Factors influencing the continuance intention of the women’s health WeChat public account: an integrated model of UTAUT2 and HBM. Frontiers in Public Health, 12(June), 1–12. https://doi.org/10.3389/fpubh.2024.1348673

Mustafa, N. K., Ibrahim, R., Aizuddin, A. N., Aljunid, S. M., & Awang, Z. (2024). Critical Success Factors and Acceptance of the Casemix System Implementation Within the Total Hospital Information System: Exploratory Factor Analysis of a Pilot Study. JMIR Formative Research, 8. https://doi.org/10.2196/56898

Nabelsi, V., & Lévesque-Chouinard, A. (2024). Successful Electronic Consultation Service Initiative in Quebec, Canada With Primary Care Physicians’ and Specialists’ Experiences on Acceptance and Use of Technological Innovation: Cross-Sectional Exploratory Study. In JMIR Formative Research (Vol. 8). https://doi.org/10.2196/52921

Nezamdoust, S., Abdekhoda, M., & Rahmani, A. (2022). Determinant factors in adopting mobile health application in healthcare by nurses. BMC Medical Informatics and Decision Making, 22(1), 1–10. https://doi.org/10.1186/s12911-022-01784-y

Ngusie, H. S., Kassie, S. Y., Zemariam, A. B., Walle, A. D., Enyew, E. B., Kasaye, M. D., Seboka, B. T., & Mengiste, S. A. (2024). Understanding the predictors of health professionals’ intention to use electronic health record system: extend and apply UTAUT3 model. BMC Health Services Research, 24(1), 1–16. https://doi.org/10.1186/s12913-024-11378-1

Oudshoorn, C., Frielink, N., Riper, H., & Embregts, P. (2024). Acceptance and Use of eHealth in Support and Psychological Therapy for People With Intellectual Disabilities: Two Cross-Sectional Studies of Health Care Professionals. JMIR Formative Research, 8, e52788. https://doi.org/10.2196/52788

Palos-Sanchez, P., Saura, J. R., Rios Martin, M. A., & Aguayo Camacho, M. (2021). Towards a Better Understanding Intention to Use (Preprint). JMIR MHealth and UHealth, 9(9), 1–19.

Pan, M., & Gao, W. (2021). Determinants of the behavioral intention to use a mobile nursing application by nurses in China. BMC Health Services Research, 21(1), 1–11. https://doi.org/10.1186/s12913-021-06244-3

Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: Models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236–263. https://doi.org/10.1057/ejis.2008.15

Retrialisca, F. (2017). Pengukuran Ksuksesan Sistem Informasi Berdasarkan D & M Model dan COBIT 5 (Studi Kasus: Universitas Airlangga) [Institut Teknologi Sepuluh Nopember]. https://repository.its.ac.id/42230/1/5215201004-Master_Thesis.pdf

Rodriguez, B., Demoral, J. K., Carpio, J. J., Gultia, A. N., Coyoca, G. S., Garciano, C., & Velasco, L. C. (2025). Electronic health records in non-hospital settings of developing economies: A systematic review on enablers and barriers. Informatics in Medicine Unlocked, 101634. https://doi.org/10.1016/j.imu.2025.101634

Rój, J. (2022). What Determines the Acceptance and Use of eHealth by Older Adults in Poland? International Journal of Environmental Research and Public Health, 19(23). https://doi.org/10.3390/ijerph192315643

Saeid Bitaraf, L. J., Haj, A., & Jebi, S. A. M. alian. (2022). Information System Success of the Iranian Integrated Health Record System Based on n the Clinical Information System Success Model.

Sheikhtaheri, A., Taheri Moghadam, S., Dehnad, A., & Tatarpoor, P. (2024). Factors influencing nurses’ acceptance of patient safety reporting systems based on the unified theory of acceptance and use of technology (UTAUT). Informatics in Medicine Unlocked, 49(December 2023), 101554. https://doi.org/10.1016/j.imu.2024.101554

Shim, M., & Jo, H. S. (2020). What quality factors matter in enhancing the perceived benefits of online health information sites? Application of the updated DeLone and McLean Information Systems Success Model. International Journal of Medical Informatics, 137(September 2019), 104093. https://doi.org/10.1016/j.ijmedinf.2020.104093

Shiyab, W., Rolls, K., Ferguson, C., & Halcomb, E. (2024). Nurses’ Use of mHealth Apps for Chronic Conditions: Cross-Sectional Survey. JMIR Nursing, 7(1), 1–10. https://doi.org/10.2196/57668

Sulistyaningrum, I. H., Pribadi, P., & Sari, S. (2023). Exploring consumer intentions to adopt telepharmacy services and development strategic recommendations: three theoretical approaches. Pharmacia, 70(3), 549–556. https://doi.org/10.3897/pharmacia.70.e105724

Tegenaw, G. S., Sori, D. A., Teklemariam, G. K., Verbeke, F., Cornelis, J., & Jansen, B. (2024). Evaluation of a Computer-Aided Clinical Decision Support System for Point-of-Care Use in Low-Resource Primary Care Settings: Acceptability Evaluation Study. JMIR Human Factors, 11. https://doi.org/10.2196/47631

Tomczyk, S., Barth, S., Schmidt, S., & Muehlan, H. (2021). Utilizing health behavior change and technology acceptance models to predict the adoption of COVID-19 contact tracing apps: Cross-sectional survey study. Journal of Medical Internet Research, 23(5). https://doi.org/10.2196/25447

Vaidhyam, S. A. K., & Huang, K. T. (2023). Social Determinants of Health and Patients’ Technology Acceptance of Telehealth During the COVID-19 Pandemic: Pilot Survey. JMIR Human Factors, 10(1). https://doi.org/10.2196/47982

Venkataraman, A., Fatma, N., Edirippulige, S., & Ramamohan, V. (2024). Facilitators and Barriers for Telemedicine Systems in India from Multiple Stakeholder Perspectives and Settings: A Systematic Review. Telemed J E Health., 30(5), 1341–1356. https://doi.org/doi: 10.1089/tmj.2023.0297

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information: Towar a Unified View. MIS Quarterly, 27(3), 425–478. https://www.jstor.org/stable/30036540

Wang, Y., Wu, T., Chen, Z., Deng, Z., & Wu, X. (2020). Active usage of mobile health applications: A three-factor theory perspective (Preprint). Journal of Medical Internet Research.

Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1287/isre.1050.0042

Woldemariam, M. T., & Jimma, W. (2023). Adoption of electronic health record systems to enhance the quality of healthcare in low-income countries: A systematic review. BMJ Health and Care Informatics, 30(1). https://doi.org/10.1136/bmjhci-2022-100704

Wu, C., & Lim, G. G. (2024). Investigating older adults users’ willingness to adopt wearable devices by integrating the technology acceptance model (UTAUT2) and the Technology Readiness Index theory. Frontiers in Public Health, 12(September), 1449594. https://doi.org/10.3389/fpubh.2024.1449594

Yousef, C. C., Salgado, T. M., Farooq, A., Burnett, K., McClelland, L. E., Abu Esba, L. C., Alhamdan, H. S., Khoshhal, S., Aldossary, I., Alyas, O. A., & Deshazo, J. P. (2021). Predicting Health Care Providers’ Acceptance of a Personal Health Record Secure Messaging Feature. Applied Clinical Informatics, 13(1), 148–160. https://doi.org/10.1055/s-0041-1742217

Yousef, C. C., Salgado, T. M., Farooq, A., Burnett, K., McClelland, L. E., Thomas, A., Alenazi, A. O., Esba, L. C. A., AlAzmi, A., Alhameed, A. F., Hattan, A., Elgadi, S., Almekhloof, S., AlShammary, M. A., Alanezi, N. A., Alhamdan, H. S., Khoshhal, S., & DeShazo, J. P. (2021). Predicting patients’ intention to use a personal health record using an adapted unified theory of acceptance and use of technology model: Secondary data analysis. JMIR Medical Informatics, 9(8). https://doi.org/10.2196/30214

Yuen, K. F., Chua, J. Y., Li, X., & Wang, X. (2023). The determinants of users’ intention to adopt telehealth: Health belief, perceived value and self-determination perspectives. Journal of Retailing and Consumer Services, 73(March), 103346. https://doi.org/10.1016/j.jretconser.2023.103346

Zha, H., Liu, K., Tang, T., Yin, Y. H., Dou, B., Jiang, L., Yan, H., Tian, X., Wang, R., & Xie, W. (2022). Acceptance of clinical decision support system to prevent venous thromboembolism among nurses: an extension of the UTAUT model. BMC Medical Informatics and Decision Making, 22(1), 1–12. https://doi.org/10.1186/s12911-022-01958-8

Zhang, M., Zhang, H., Zhu, R., Yang, H., Chen, M., Wang, X., Li, Z., & Xiong, Z. (2023). Factors affecting the willingness of patients with type 2 diabetes to use digital disease management applications: a cross-sectional study. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1259158

Zheng, F., Wang, K., Wang, Q., Yu, T., Wang, L., Zhang, X., Wu, X., Zhou, Q., & Tan, L. (2023). Factors Influencing Clinicians’ Use of Hospital Information Systems for Infection Prevention and Control: Cross-Sectional Study Based on the Extended DeLone and McLean Model. Journal of Medical Internet Research, 25, 1–14. https://doi.org/10.2196/44900

Downloads

Published

2025-08-03

How to Cite

Widyanti, N., Khoiri, A., & Dewanto, I. (2025). Faktor-Faktor Penentu Keberhasilan Implementasi Sistem Informasi Kesehatan Ditinjau Dari Perspektif Pengguna: Tinjauan Literatur Sistematis. Jurnal Ilmiah Global Education, 6(3), 1241–1256. https://doi.org/10.55681/jige.v6i3.3836