Application of Zero Inflated Ordered Logit (ZIOL) (Case Study: The Employment Status Of The Working-Age Population In Banten Province)
DOI:
https://doi.org/10.55681/jige.v6i2.3675Keywords:
Banten Province, Employment Status, Zero Inflated Ordered Logit (ZIOL)Abstract
Unemployment remains a major economic issue in Indonesia, particularly in Banten Province, which has the highest open unemployment rate. Traditional models struggle to capture the zero inflation characteristics in labor force data, where most individuals are employed. This study applies the Zero-Inflated Ordered Logit (ZIOL) model to better analyze labor force status in Banten by distinguishing between genuinely unemployed individuals and those appearing unemployed due to external factors.Using data from the National Labor Force Survey (SAKERNAS) 2023, this study examines the impact of gender, education, residence, job training access, and work experience on employment. The results show that women, individuals with lower education, and those lacking work experience are more likely to be unemployed or underemployed. ZIOL outperforms traditional ordinal logit models in capturing these dynamics.The findings provide insights for policymakers to design more effective employment strategies, particularly in regions facing high unemployment.
Downloads
References
Agresti. (2002). Categorical Data Analysis.
Allen, E., Francisco, R., Ginting, E., Indrio, V. T., Manning, C., Marshan, J., Mercer-Blackman, V., Naval, D., Pratomo, D. S., Suryahadi, A., Tadjoeddin, M. Z., & Taniguchi, K. (2018). Indonesia Enhancing Productivity Through Quality Jobs. In Asian Development Bank.
Annisa Qurrota Ayu, Subanti, S., & Sugiyanto. (2024). FACTORS AFFECTING OPEN UNEMPLOYMENT RATE IN BANTEN PROVINCE USING PANEL DATA REGRESSION. Journal of Mathematics and Mathematics Education.
Aqilla Haya, Risma Dwi Lestari, & Tengku Mashitah Crisanty. (2023). Analysis of Factors Affecting the Open Unemployment Rate (UOR) 2022 : A Case of Banten in Indonesia. Proceedings of The International Conference on Data Science and Official Statistics, 2023(1), 639–649. https://doi.org/10.34123/icdsos.v2023i1.386
Downward, P., Lera-Lopez, F., & Rasciute, S. (2011). The zero-inflated ordered probit approach to modelling sports participation. Economic Modelling, 28(6), 2469–2477. https://doi.org/10.1016/j.econmod.2011.06.024
Harris, M. N., & Zhao, X. (2007). A zero-inflated ordered probit model, with an application to modelling tobacco consumption. Journal of Econometrics, 141(2), 1073–1099. https://doi.org/10.1016/j.jeconom.2007.01.002
Hosmer and, & Lemeshow. (2000). Epdf.Pub_Applied-Logistic-Regression-Wiley-Series-in-Probab.Pdf (pp. 1–30).
Jiang, X., Huang, B., Zaretzki, R. L., Richards, S., Yan, X., & Zhang, H. (2013). Investigating the influence of curbs on single-vehicle crash injury severity utilizing zero-inflated ordered probit models. Accident Analysis and Prevention, 57, 55–66. https://doi.org/10.1016/j.aap.2013.03.018
Kelley, M. E., & Anderson, S. J. (2008). Zero inflation in ordinal data: Incorporating susceptibility to response through the use of a mixture model. Statistics in Medicine, 27(18), 3674–3688. https://doi.org/10.1002/sim.3267
Pardosi, A. Y., & Septriani, S. (2023). Determination Factors of Unemployment in Banten. Jurnal Ekonomi, 12(04), 2341–2347. https://ejournal.seaninstitute.or.id/index.php/Ekonomi/article/view/3337%0Ahttps://ejournal.seaninstitute.or.id/index.php/Ekonomi/article/download/3337/2725
Presiden Republik Indonesia. (2020). Peraturan Presiden Republik Indonesia Nomor 18 Tahun 2020 Tentang Rencana Pembangunan Jangka Menengah Nasional 2020-2024. Sekretariat Presiden Republik Indonesia, 1–7.
Rejeki, N., Ratnasari, V., & Ahsan, M. (2024). Modelling of Poor Household in East Kalimantan Using Zero Inflated Ordered Probit (ZIOP) Approach. Procedia Computer Science, 234(2023), 278–285. https://doi.org/10.1016/j.procs.2024.03.002
Stata, S. (n.d.). Zero - inflated ordered logit model.
Yanthiani, L. (2023). The Impact of Unemployment on the Economy in Indonesia. Journal of Islamic Economics and Business, 2(2), 112–130. https://doi.org/10.15575/jieb.v2i2.21310
Yoong, P. S., & Gil Sander, F. (2020). Structural Transformation and Labor Productivity in Indonesia. Structural Transformation and Labor Productivity in Indonesia, 1–33. https://doi.org/10.1596/35951
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jessie Reyna Marshiela, Vita Ratnasari, Santi Puteri Rahayu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.